Question

A consumer has the quasi-linear utility function U(q1,q2) = 64q1^(1/2) + q2 Assume p2 = 1...

A consumer has the quasi-linear utility function U(q1,q2) = 64q1^(1/2) + q2 Assume p2 = 1 and Y = 100. Find the consumer's compensating and equivalent variations for an increase in p1 from 1 to 2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer has the quasi-linear utility function U(q1,q2) = 64q1^(1/2) + q2 Assume p2 = 1...
A consumer has the quasi-linear utility function U(q1,q2) = 64q1^(1/2) + q2 Assume p2 = 1 and Y = 100. Find the consumer's compensating and equivalent variations for an increase in p1 from 1 to 2.
A consumer has utility function U(q1; q2) = 4(q1)^(.5) + q2, and income y = 10....
A consumer has utility function U(q1; q2) = 4(q1)^(.5) + q2, and income y = 10. Let the price of good 2 be p2 = 1, and suppose the price of good 1 increases from p1 = 1 to p1 = 2. Find the demand function for good 1.
A consumer has utility function U(q1, q2) = q1 + √q2, income Y= 8, and faces...
A consumer has utility function U(q1, q2) = q1 + √q2, income Y= 8, and faces prices p1= 4 and p2= 1. Find all consumption bundles that satisfy the necessary condition for a utility maximizing choice. Then determine which of these is optimal.
What is the money-metric utility function of a consumer with the utility function U(q1, q2,) =?q1...
What is the money-metric utility function of a consumer with the utility function U(q1, q2,) =?q1 +?q2 ? Use prices p1=p2= 2 to determine the money-metric utility function.
A consumer has utility functionU(q1, q2) = (q1)^(2)+2(q2)^(2), income Y= 24, and faces prices p1= 1...
A consumer has utility functionU(q1, q2) = (q1)^(2)+2(q2)^(2), income Y= 24, and faces prices p1= 1 and p2= 3. Find all consumption bundles that satisfy the necessary condition fora utility maximizing choice. Then determine which of these is optimal.
Diogo has a utility function, U(q1, q2) = q1 0.8 q2 0.2, where q1 is chocolate...
Diogo has a utility function, U(q1, q2) = q1 0.8 q2 0.2, where q1 is chocolate candy and q2 is slices of pie. If the price of slices of pie, p2, is $1.00, the price of chocolate candy, p1, is $0.50, and income, Y, is $100, what is Diogo's optimal bundle? The optimal value3 of good q1 is q = units. (Enter your response rounded to two decimal places.) 1 The optimal value of good q2 is q2 = units....
Suppose a consumer has quasi-linear utility: u(x1,x2 ) = 3x1^2/3 + x2 . The marginal utilities...
Suppose a consumer has quasi-linear utility: u(x1,x2 ) = 3x1^2/3 + x2 . The marginal utilities are MU1(x) = 2x1^−1/3 and MU2 (x) = 1. Throughout this problem, assume p2 = 1 1.(a) Sketch an indifference curve for these preferences (label axes and intercepts). (b) Compute the marginal rate of substitution. (c) Assume w ≥ 8/p1^2 . Find the optimal bundle (this will be a function of p1 and w). Why do we need the assumption w ≥ 8/p1^2 ?...
1. Suppose that a consumer has a utility function U(x1, x2) = x 0.5 1 x...
1. Suppose that a consumer has a utility function U(x1, x2) = x 0.5 1 x 0.5 2 . Initial prices are p1 = 1 and p2 = 1, and income is m = 100. Now, the price of good 1 increases to 2. (a) On the graph, please show initial choice (in black), new choice (in blue), compensating variation (in green) and equivalent variation (in red). (b) What is amount of the compensating variation? How to interpret it? (c)...
Diogo’s utility function is U(q1, q2)=q10.75q20.25 where q1 is chocolate candy and q2 is slices of...
Diogo’s utility function is U(q1, q2)=q10.75q20.25 where q1 is chocolate candy and q2 is slices of pie. If the price of a chocolate bar, p1, is $1, the price of a slice of pie, p2, is $2, and Y is $80, a.Now suppose price of chocolate bar increases to $2. What will be Diogo’s optimal bundle now? b. Underneath the above diagram, draw Diogo’s demand curve. Does Diogo’s utility rise as you move up along his demand curve? What happens...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially...
3. Suppose that a consumer has a utility function u(x1, x2) = x1 + x2. Initially the consumer faces prices (1, 2) and has income 10. If the prices change to (4, 2), calculate the compensating and equivalent variations. [Hint: find their initial optimal consumption of the two goods, and then after the price increase. Then show this graphically.] please do step by step and show the graph
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT