Question

Suppose a consumer has quasi-linear utility: u(x1,x2 ) = 3x1^2/3 + x2 . The marginal utilities...

Suppose a consumer has quasi-linear utility: u(x1,x2 ) = 3x1^2/3 + x2 . The marginal utilities

are MU1(x) = 2x1^−1/3 and MU2 (x) = 1. Throughout this problem, assume p2 = 1

1.(a) Sketch an indifference curve for these preferences (label axes and intercepts).

  1. (b) Compute the marginal rate of substitution.

  2. (c) Assume w ≥ 8/p1^2 . Find the optimal bundle (this will be a function of p1 and w). Why do

we need the assumption w ≥ 8/p1^2 ?


(d) Sketch the demand function for good 1 (holding w and p2 constant).

  1. (e) Suppose p1 = 2. Compute the consumer’s surplus.

  2. (f) Now suppose the government imposes a tax on good 1, so that the price of good 1 becomes 2 + t for some t > 0. Compute the consumer’s surplus (this will be a function of t).

Homework Answers

Answer #1

Hi there! Thank you for the question. As per our Honor Code, we will only answer 4 sub-parts. So, we will answer the first 4. Please re-submit the question and specify the other parts (up to 4) you would like to be answered.

___________________________________________________________________________________________________

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider utility function u(x1,x2) =1/4x12 +1/9x22. Suppose the prices of good 1 and good 2 are...
Consider utility function u(x1,x2) =1/4x12 +1/9x22. Suppose the prices of good 1 and good 2 are p1 andp2, and income is m. Do bundles (2, 9) and (4, radical54) lie on the same indifference curve? Evaluate the marginal rate of substitution at (x1,x2) = (8, 9). Does this utility function represent convexpreferences? Would bundle (x1,x2) satisfying (1) MU1/MU2 =p1/p2 and (2) p1x1 + p2x2 =m be an optimal choice? (hint: what does an indifference curve look like?)
Suppose x1 and x2 are perfect substitutes with the utility function U(x1, x2) = 2x1 +...
Suppose x1 and x2 are perfect substitutes with the utility function U(x1, x2) = 2x1 + 6x2. If p1 = 1, p2 = 2, and income m = 10, what it the optimal bundle (x1*, x2*)?
Consider a utility function u(x1,x2)u(x_1, x_2) where: MU1=2x11x42MU_1 = 2x_1^{1} x_2^{4} MU2=4x21x32MU_2 = 4x_1^{2} x_2^{3} The...
Consider a utility function u(x1,x2)u(x_1, x_2) where: MU1=2x11x42MU_1 = 2x_1^{1} x_2^{4} MU2=4x21x32MU_2 = 4x_1^{2} x_2^{3} The consumer with this utility function is consuming an optimal bundle (x∗1,x∗2)=(4,6)(x_1^*, x_2^*) = (4, 6) when the price of good 1 is p1=2p_1 = 2. What is the consumer’s income?
7. Suppose you have the following utility function for two goods: u(x1, x2) = x 1/3...
7. Suppose you have the following utility function for two goods: u(x1, x2) = x 1/3 1 x 2/3 2 . Suppose your initial income is I, and prices are p1 and p2. (a) Suppose I = 400, p1 = 2.5, and p2 = 5. Solve for the optimal bundle. Graph the budget constraint with x1 on the horizontal axis, and the indifference curve for that bundle. Label all relevant points (b) Suppose I = 600, p1 = 2.5, and...
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function...
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function faces prices p1 = 2 and p2 = 3 and he has an income m = 12. What’s his optimal bundle to consume?
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2...
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2 + X1X2 and the budget constraint P1X1 + P2X2 = M , where M is income, and P1 and P2 are the prices of the two goods. . a. Find the consumer’s marginal rate of substitution (MRS) between the two goods. b. Use the condition (MRS = price ratio) and the budget constraint to find the demand functions for the two goods. c. Are...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption of good 1 and x2 is her consumption of good 2. The price of good 1 is p1, the price of good 2 is p2, and her income is M. Setting the marginal rate of substitution equal to the price ratio yields this equation: p1/p2 = (1+x2)/(A+x1) where A is a number. What is A? Suppose p1 = 11, p2 = 3 and M...
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal...
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1,p2,m) and x2(p1, p2,m) by using the method of Lagrange.
4. Suppose a consumer has perfect substitutes preference such that good x1 is twice as valuable...
4. Suppose a consumer has perfect substitutes preference such that good x1 is twice as valuable as to the consumer as good x2. (a) Find a utility function that represents this consumer’s preference. (b) Does this consumer’s preference satisfy the convexity and the strong convex- ity? (c) The initial prices of x1 and x2 are given as (p1, p2) = (1, 1), and the consumer’s income is m > 0. The prices are changed, and the new prices are (p1,p2)...
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate...
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1, p2, m) and x2(p1,p2, m) by using the method of Lagrange.