Question

Consider the following recursive algorithm for computing the sum of the first ? cubes: ? (?)...

Consider the following recursive algorithm for computing the sum of the first ? cubes: ? (?) = 13 + 23 + ⋯+ ? 3 . Algorithm S(n) //Input: A positive integer n //Output: The sum of the first n cubes if n = 1 return 1 else return S(n-1) + n * n * n

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recursively computing sums of cubes, cont. (a) Use induction to prove that your algorithm to compute...
Recursively computing sums of cubes, cont. (a) Use induction to prove that your algorithm to compute the sum of the cubes of the first n positive integers returns the correct value for every positive integer input.
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n...
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n 1)What does this algorithm compute? 2) Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed. 3) How does this algorithm compare with the non-recusive algorithm for computing thius function in terms of time efficeincy and space effeciency?
Consider the following recursive algorithm. Algorithm Test (T[0..n − 1]) //Input: An array T[0..n − 1]...
Consider the following recursive algorithm. Algorithm Test (T[0..n − 1]) //Input: An array T[0..n − 1] of real numbers if n = 1 return T[0] else temp ← Test (T[0..n − 2]) if temp ≥ T[n − 1] return temp else return T[n − 1] a. What does this algorithm compute? b. Set up a recurrence relation for the algorithm’s basic operation count and solve it.
a. Design a non-recursive algorithm for computing an (discussed in the class). What is the basic...
a. Design a non-recursive algorithm for computing an (discussed in the class). What is the basic operation? How many times is the algorithm’s basic operation executed? b. Using an = a*an-1 (discussed in the class) to design a recursive algorithm for computing an . What is the basic operation? Set up and solve a recurrence relation for the number of times that algorithm's basic operation is executed. c. Using an = a*(a(n-1)/2) 2 (n is odd integer) and an =...
a) Give a recursive algorithm for finding the max of a finite set of integers, making...
a) Give a recursive algorithm for finding the max of a finite set of integers, making use of the fact that the max of n integers is the larger of the last integer in the list and the max of the first n-1 integers in the list. Procedure power(x,n): If (n=0): return 1 Else: return power(x,n-1) · x b) Use induction to prove your algorithm is correct
Question 4: The function f : {0,1,2,...} → R is defined byf(0) = 7, f(n) =...
Question 4: The function f : {0,1,2,...} → R is defined byf(0) = 7, f(n) = 5·f(n−1)+12n2 −30n+15 ifn≥1.• Prove that for every integer n ≥ 0, f(n)=7·5n −3n2. Question 5: Consider the following recursive algorithm, which takes as input an integer n ≥ 1 that is a power of two: Algorithm Mystery(n): if n = 1 then return 1 else x = Mystery(n/2); return n + xendif • Determine the output of algorithm Mystery(n) as a function of n....
A program devise a recursive algorithm to find a2n, where a is a real number and...
A program devise a recursive algorithm to find a2n, where a is a real number and n is a positive integer (hint: use the equality a2n+1 = (a^2n)^2
Given this algorithm written in pseudocode:   Algo(n) Input: A positive integer n Output: Answer, Algo(n) If...
Given this algorithm written in pseudocode:   Algo(n) Input: A positive integer n Output: Answer, Algo(n) If n = 1 Answer = 3 Else Answer = 3 × Algo(n-1) End if What is Algo(4)? Please provide a detailed answer! thank you!
Consider the recursive algorithm given to compute factorial. Which statement below most closely relates to the...
Consider the recursive algorithm given to compute factorial. Which statement below most closely relates to the concept of the inductive hypothesis in induction? n = 0 factorial(n-1) return n * factorial(n-1) return Which counting rule is best suited to solving the following problem: You are a pop star performing a concert for your fans. You say “Everybody put your hands up!” and you count 28 hands. Assuming everyone in your audience has 2 hands, how many audience members are there?...
Design a recursive algorithm with proofs of the following: Richest Heritage: Input: A binary tree T...
Design a recursive algorithm with proofs of the following: Richest Heritage: Input: A binary tree T in which each node x contains a field worth[x], which is a (positive, zero, or negative) monetary value expressed as a real number. Define (monetary) heritageof a node x to be the total worth of ancestors of x minus the total worth of proper descendants of x. Output: A node x in T with maximum heritage