Question

Use python (spi.RK45 )to code the Runge Kutta method to approximate/plot the solution the following initial-value...

Use python (spi.RK45 )to code the Runge Kutta method to approximate/plot the solution the following initial-value

?′=1+(?−?)2, 2<?<3, ?(2)=1y′=1+(t−y)2, 2

Homework Answers

Answer #1
def dydx(t, y): 
    return 1+(t-y)*2 

def rungeKutta(x0, y0, x, h): 
    # Count number of iterations using step size or 
    # step height h 
    n = (int)((x - x0)/h)  
    # Iterate for number of iterations 
    y = y0 
    for i in range(1, n + 1): 
        "Apply Runge Kutta Formulas to find next value of y"
        k1 = h * dydx(x0, y) 
        k2 = h * dydx(x0 + 0.5 * h, y + 0.5 * k1) 
        k3 = h * dydx(x0 + 0.5 * h, y + 0.5 * k2) 
        k4 = h * dydx(x0 + h, y + k3) 
  
        # Update next value of y 
        y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4) 
  
        # Update next value of x 
        x0 = x0 + h 
    return y 
  
# Driver method 
x0 = 0
y = 1
t = 2
h = 0.2
print ('The value of y at x is:', rungeKutta(x0, y, x, h))
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use C++ in Solving Ordinary Differential Equations using a Fourth-Order Runge-Kutta of Your Own Creation Assignment:...
Use C++ in Solving Ordinary Differential Equations using a Fourth-Order Runge-Kutta of Your Own Creation Assignment: Design and construct a computer program in C++ that will illustrate the use of a fourth-order explicit Runge-Kutta method of your own design. In other words, you will first have to solve the Runge-Kutta equations of condition for the coefficients of a fourth-order Runge-Kutta method.   See the Mathematica notebook on solving the equations for 4th order RK method.   That notebook can be found at...
Determine the numerical solution of the differential equation y'+y-x=0 using the Euler and the Runge-Kutta method...
Determine the numerical solution of the differential equation y'+y-x=0 using the Euler and the Runge-Kutta method until n = 5. The step size is 0.2, y(0) = 1. No need to show calculations, I just need the summary of results of both methods with their percent absolute error from the exact value per yn. Abs. error will be (Exact-Approx)/Exact * 100
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem...
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem at the points x=4.2 4.4 4.6 4.8 round to two decimal y'=3/x(y^2+y), y(4)=1
Given (dy/dx)=(3x^3+6xy^2-x)/(2y) with y=0.707 at x= 0, h=0.1 obtain a solution by the fourth order Runge-Kutta...
Given (dy/dx)=(3x^3+6xy^2-x)/(2y) with y=0.707 at x= 0, h=0.1 obtain a solution by the fourth order Runge-Kutta method for a range x=0 to 0.5
Problem 6. Use Euler’s Method to approximate the particular solution of this initial value problem (IVP):...
Problem 6. Use Euler’s Method to approximate the particular solution of this initial value problem (IVP): dydx=√y+x satisfying the initial condition y(0)=1 on the interval [0,0.4] with h = 0.1. Round ?? to 4 decimal places.
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.2), where y(x) is the solution of the initial-value problem y'' − 4y' + 4y = 0,  y(0) = −3,  y'(0) = 1. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(0.2) with y2. (Round your answers to four decimal places.) y(0.2) ≈     (Euler approximation) y(0.2) = -2.3869 (exact value) I'm looking for the Euler approximation number, thanks.
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y''...
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y'' − 2xy' + 2y = 0,  y(1) = 9,  y'(1) = 9, where x > 0. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(1.2) with y2. (Round your answers to four decimal places.) y(1.2) ≈     (Euler approximation) y(1.2) =     (exact value)
Use Euler's method to approximate y(0.7), where y(x) is the solution of the initial-value problem y''...
Use Euler's method to approximate y(0.7), where y(x) is the solution of the initial-value problem y'' − (2x + 1)y = 1, y(0) = 3, y'(0) = 1. First use one step with h = 0.7. (Round your answer to two decimal places.) y(0.7) = ? Then repeat the calculations using two steps with h = 0.35. (Round your answers to two decimal places.) y(0.35) = ? y(0.7) =?
dy/dx = x^4/y^2 initial condition y(1)= 1 a) use eulers method to approximate the solution at...
dy/dx = x^4/y^2 initial condition y(1)= 1 a) use eulers method to approximate the solution at x=1.6 and a step size od delta x = 0.2 b) solve the differential equation exactly using seperation variabled and the intial condtion y(1)=1. c) what is the exact value of y(1.6) for your solution from part b.
10.16: Write a user-defined MATLAB function that solves a first-order ODE by applying the midpoint method...
10.16: Write a user-defined MATLAB function that solves a first-order ODE by applying the midpoint method (use the form of second-order Runge-Kutta method, Eqs(10.65),(10.66)). For function name and arguments use [x,y]=odeMIDPOINT(ODE,a,b,h,yINI). The input argument ODE is a name for the function that calculates dy/dx. It is a dummy name for the function that is imported into odeMIDPOINT. The arguments a and b define the domain of the solution, h is step size; yINI is initial value. The output arguments, x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT