Referring to Friday’s class presentation on “condition flags” (Z=zero, N=negative, C=carry, V=overflow), assume the operation A-B is performed using two’s complement arithmetic. For each of the following six relationships, write a logic expression in terms of Z, N, C, and/or V that evaluates to 1 if that relationship is true, based on the result of A-B.
A = B
A != B (not equal)
A > B
A ≥ B
A < B
A ≤ B
1. A=B
let A=B=9
A= 1001, B=1001, 2's compliment of B= 0111
A-B= 1 0000
Z=1, N=0, C=1, V=1
2. A!=B
let A=9, B=8.
A=1001, B=1000, 2's compliment of B= 1000
A-B= 1 0001
Z=0, N=0, C=1, V=0.
3. A > B
let A=9, B=8.
A=1001, B=1000, 2's compliment of B= 1000
A-B= 1 0001
Z=0, N=0, C=1, V=0.
4. A>=B
let A=9, B=8.
A=1001, B=1000, 2's compliment of B= 1000
A-B= 1 0001
Z=0, N=0, C=1, V=0.
OR
let A=B=9
A= 1001, B=1001, 2's compliment of B= 0111
A-B= 1 0000
Z=1, N=0, C=1, V=1
5. A<B
let A=8, B=9.
A=01000, B=01001, 2's complient of B=10111.
A-B= 11111
Z=0, N=1, C=0, V=0.
6. A<=B
let A=8, B=9.
A=01000, B=01001, 2's complient of B=10111.
A-B= 11111
Z=0, N=1, C=0, V=0.
OR
let A=B=9
A= 1001, B=1001, 2's compliment of B= 0111
A-B= 1 0000
Z=1, N=0, C=1, V=1.
Hence Expression for Z, N, C, V:
Z+N+C+V=1
Get Answers For Free
Most questions answered within 1 hours.