Question

Let T(n) = 3T(n/2)+f(n) and f(n) = Θ(n), use the master method to solve T(n)

Let T(n) = 3T(n/2)+f(n) and f(n) = Θ(n), use the master method to solve T(n)

Homework Answers

Answer #1
Master method:
---------------
T(n) = aT(n/b) + f(n)
If f(n) = Θ(n^c) where c < Logb(a) then T(n) = Θ(n^Logb(a))
If f(n) = Θ(n^c) where c = Logb(a) then T(n) = Θ((n^c)(Log(n)))
If f(n) = Θ(n^c) where c > Logb(a) then T(n) = Θ(f(n))


T(n) = 3T(n/2)+f(n)
and given f(n) = Θ(n)

Then T(n) = 3T(n/2)+Θ(n)
Where a = 3, b = 2, f(n) = Θ(n) and then c is 1

Logb(a)
= Log2(3)
= 1.584962500721156

c < Logb(a) is True.
So, It applies the rule T(n) = Θ(n^Logb(a))

T(n) = Θ(n^Log2(3))
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Master Theorem: Let T(n) = aT(n/b) + f(n) for some constants a ≥ 1, b >...
Master Theorem: Let T(n) = aT(n/b) + f(n) for some constants a ≥ 1, b > 1. (1). If f(n) = O(n logb a− ) for some constant > 0, then T(n) = Θ(n logb a ). (2). If f(n) = Θ(n logb a ), then T(n) = Θ(n logb a log n). (3). If f(n) = Ω(n logb a+ ) for some constant > 0, and af(n/b) ≤ cf(n) for some constant c < 1, for all large n,...
Use Master Theorem to solve the following recurrences. Justify your answers. (1) T(n) = 3T(n/3) +...
Use Master Theorem to solve the following recurrences. Justify your answers. (1) T(n) = 3T(n/3) + n (2) T(n) = 8T(n/2) + n^2 (3) T(n) = 27T(n/3) + n^5 (4) T(n) = 25T(n/5) + 5n^2
Solve the following recurrences: (a) T(n) = T(n=2) + O(n), with T(1) = 1. Solve this...
Solve the following recurrences: (a) T(n) = T(n=2) + O(n), with T(1) = 1. Solve this two times: one with the substitution method and one with the master theorem from CLRS. When you use the master theorem, carefully show the values for the parameters a; b. For the following cases you can use your preferred method. In either case, show your work: (b) T(n) = 2T(n/2) + O(1), T(1) = 1. (c) T(n) = 3T(n/2) + O(1), T(1) = 1....
Apply the master method (I need detailed steps, stating which case, values of Є, etc…). T(n)=T(2n/3)+1...
Apply the master method (I need detailed steps, stating which case, values of Є, etc…). T(n)=T(2n/3)+1 T(n) =3T(n/4)+ n *logn T(n)= 9T(n/3)+n
Solve the following recurrence relations. If possible, use the Master Theorem. If the Master Theorem is...
Solve the following recurrence relations. If possible, use the Master Theorem. If the Master Theorem is not possible, explain why not and solve it using another approach (substitution with n = 3h or h - log3(n). a. T(n) = 7 * n2 + 11 * T(n/3) b. T(n) = 4 * n3 * log(n) + 27 * T(n/3)
Problem 2 Let X1, · · · , Xn IID∼ N(θ, θ) with θ > 0....
Problem 2 Let X1, · · · , Xn IID∼ N(θ, θ) with θ > 0. Find a pivotal quantity and use it to construct a confidence interval for θ.
Consider the recurrence relation T(1) = 0, T(n) = 25T(n/5) + 5n. (a) Use the Master...
Consider the recurrence relation T(1) = 0, T(n) = 25T(n/5) + 5n. (a) Use the Master Theorem to find the order of magnitude of T(n) (b) Use any of the various tools from class to find a closed-form formula for T(n), i.e. exactly solve the recurrence. (c) Verify your solution for n = 5 and n = 25.
Solve the following recurrences where T(1) = 1 D) T(n) = 2T(n/2) + n^2 F) T(n)...
Solve the following recurrences where T(1) = 1 D) T(n) = 2T(n/2) + n^2 F) T(n) = 2T(n-1) + n
Let T(n) = 1 + 2 + ... + n be the n-th triangular number. For...
Let T(n) = 1 + 2 + ... + n be the n-th triangular number. For example, t(1) = 1, t(2) = 3, t(3) = 6... T(n)= n(n+1)/ 2 a. Show that T(2n) = 3T(n) + T(n-1) b. Show that T(1) + T(2) + T(n) = (n(n+1)(n+2))/6
Solve the recurrence relation using the substitution method: 1. T(n) = T(n/2) + 2n, T(1) =...
Solve the recurrence relation using the substitution method: 1. T(n) = T(n/2) + 2n, T(1) = 1, n is a 2’s power 2. T(n) = 2T(n/2) + n^2, T(1) = 1, n is a 2’s power
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT