Question

Data Mining Given the 2 vectors, X = (1, 1,0,1, 0, 1) Y = (1,1,1,0,0, 1)...

Data Mining

Given the 2 vectors,

X = (1, 1,0,1, 0, 1)

Y = (1,1,1,0,0, 1)

Compute the distance between X and Y using the Cosine Similarity.

Homework Answers

Answer #1

Answer:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
GIVEN INFORMATION {X=0, Y=0} = 36 {X=0, Y=1} = 4 {X=1, Y=0} = 4 {X=1, Y=1}...
GIVEN INFORMATION {X=0, Y=0} = 36 {X=0, Y=1} = 4 {X=1, Y=0} = 4 {X=1, Y=1} = 6 1. Use observed cell counts found in the given information to estimate the joint probabilities for (X = x, Y = y) 2. Find the marginal probabilities of X = x and Y = y 3. Find P (Y = 1|X = 1) and P (Y = 1|X = 0) 4. Find P (X = 1 ∪ Y = 1) 5. Use...
Create vectors x=(1,2,...,10) and y=(2,2^2,...,2^10). Then compute the Euclidean distance and inner product between x and...
Create vectors x=(1,2,...,10) and y=(2,2^2,...,2^10). Then compute the Euclidean distance and inner product between x and y, respectively. ( Use R language and Do Not use "for")
2. Find a basis for R 4 that contains the vectors X = (1, 0, 0,...
2. Find a basis for R 4 that contains the vectors X = (1, 0, 0, 1) and Y = (1, 1, 0, 1). Note: I'm not looking for the orthogonal basis, im looking for a basis that contains those 2 vectors.
1. Let f (x, y) = xy((x^2-y^2)/(x^2+y^2)) if, (x, y) 6= (0, 0), 0, if (x,...
1. Let f (x, y) = xy((x^2-y^2)/(x^2+y^2)) if, (x, y) 6= (0, 0), 0, if (x, y) = (0, 0) (it's written as a piecewise function) (a) Compute ∂f/∂y (0, 0) and ∂f/∂x (0, 0). (b) Compute ∂f/∂y (x, 0) for all x, and ∂f/∂x (0, y) for all y (c) Use part (a) and (b) to compute ∂^2f/∂y∂x (0, 0) and ∂^2f/ ∂x∂y (0, 0), then verify that: ∂^2f/∂y∂x (0, 0) does not equal ∂^f/ ∂x∂y (0, 0)
If X and Y are vectors of magnitude 1 and 2, respectively, with an angle of...
If X and Y are vectors of magnitude 1 and 2, respectively, with an angle of 120º between them. Determine I3X + 2YI and the direction of vector 3X + 2Y. Vectors are 2D
a). Find dy/dx for the following integral. y=Integral from 0 to cosine(x) dt/√1+ t^2 , 0<x<pi  ...
a). Find dy/dx for the following integral. y=Integral from 0 to cosine(x) dt/√1+ t^2 , 0<x<pi   b). Find dy/dx for tthe following integral y=Integral from 0 to sine^-1 (x) cosine t dt
1. Calculate sin (x + y) when sin (x) = 0.20 (0 < x < π/2)...
1. Calculate sin (x + y) when sin (x) = 0.20 (0 < x < π/2) and sin (y) = 0.60 (π/2 < y< π) . 2. Find two vectors that have the same magnitude and are perpendicular to 3i + 5j 3. Two vectors are given by a = 3i + 2j and b = −i + 5j. Calculate the vector product of axb.
Given the following joint density, f(x,y)={10xy^2 if 0<x<y<1 f(x,y)={ 0 otherwise 1. frequency function x given...
Given the following joint density, f(x,y)={10xy^2 if 0<x<y<1 f(x,y)={ 0 otherwise 1. frequency function x given y 2. E(x given y), Var(x given y) 3. Var(E(x given y), E(Var(x given y)
given the differential equation y'+y=x^2+2x, compute the value of the solution y(x) at x=1 given the...
given the differential equation y'+y=x^2+2x, compute the value of the solution y(x) at x=1 given the inital condition y(0)=2. Also, use h=0.1
Solve the given LDE using the method of undetermined coefficients. y'''-y'=4e^-x+3e^2x; y(0)=0, y'(0)=-1, y''(0)=2
Solve the given LDE using the method of undetermined coefficients. y'''-y'=4e^-x+3e^2x; y(0)=0, y'(0)=-1, y''(0)=2