Question

1. Let f (x, y) = xy((x^2-y^2)/(x^2+y^2)) if, (x, y) 6= (0, 0), 0, if (x,...

1. Let f (x, y) =

xy((x^2-y^2)/(x^2+y^2)) if, (x, y) 6= (0, 0),

0, if (x, y) = (0, 0) (it's written as a piecewise function)

(a) Compute ∂f/∂y (0, 0) and ∂f/∂x (0, 0).

(b) Compute ∂f/∂y (x, 0) for all x, and ∂f/∂x (0, y) for all y

(c) Use part (a) and (b) to compute ∂^2f/∂y∂x (0, 0) and ∂^2f/ ∂x∂y (0, 0), then verify that:

∂^2f/∂y∂x (0, 0) does not equal ∂^f/ ∂x∂y (0, 0)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. for 0<= x <=3 0<=x<=1 f(x,y) = k(x^2y+ xy^2) a. Find K joint probablity density...
1. for 0<= x <=3 0<=x<=1 f(x,y) = k(x^2y+ xy^2) a. Find K joint probablity density function. b. Find marginal distribution respect to x c. Find the marginal distribution respect to y d. compute E(x) and E(y) e. compute E(xy) f. Find the covariance and interpret the result.
Let X and Y have joint density f(x, y) = 6/7(x + y)^2 if 0 ≤...
Let X and Y have joint density f(x, y) = 6/7(x + y)^2 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 otherwise, where c is a positive constant. Compute the marginal densities of X and of Y (be explicit about all cases!). Compute P(Y + 2X < 1). Determine whether X and Y are independent. Justify your answer.
Let f(x, y) = sqrt( x^2 − y − 4) ln(xy). • Plot the domain of...
Let f(x, y) = sqrt( x^2 − y − 4) ln(xy). • Plot the domain of f(x, y) on the xy-plane. • Find the equation for the tangent plane to the surface at the point (4, 1/4 , 0). Give full explanation of your work
Let f(x, y) = 1/2 , y < x < 2, 0 ≤ y ≤ 2...
Let f(x, y) = 1/2 , y < x < 2, 0 ≤ y ≤ 2 , be the joint pdf of X and Y . (a) Find P(0 ≤ X ≤ 1/3) . (b) Find E(X) . (c) Find E(X|Y = 1) .
Consider F and C below. F(x, y, z) = yz i + xz j + (xy...
Consider F and C below. F(x, y, z) = yz i + xz j + (xy + 12z) k C is the line segment from (2, 0, −3) to (4, 6, 3) (a) Find a function f such that F = ∇f. f(x, y, z) =       (b) Use part (a) to evaluate    C ∇f · dr along the given curve C.
Let F be the defined by the function F(x, y) = 3 + xy - x...
Let F be the defined by the function F(x, y) = 3 + xy - x - 2y, with (x, y) in the segment L of vertices A (5,0) and B (1,4). Find the absolute maximums and minimums.
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where x = 1, 2, 3; y = 1, 2, x + y ≤ 4 , that is, (x, y) are {(1, 1),(1, 2),(2, 1),(2, 2),(3, 1)} . (a) Find c > 0 . (b) Find μX (c) Find μY (d) Find σ^2 X (e) Find σ^2 Y (f) Find Cov (X, Y ) (g) Find ρ , Corr (X, Y ) (h) Are X...
1. Let f(x, y) = 2x + xy^2 , x, y ∈ R. (a) Find the...
1. Let f(x, y) = 2x + xy^2 , x, y ∈ R. (a) Find the directional derivative Duf of f at the point (1, 2) in the direction of the vector →v = 3→i + 4→j . (b) Find the maximum directional derivative of f and a unit vector corresponding to the maximum directional derivative at the point (1, 2). (c) Find the minimum directional derivative and a unit vector in the direction of maximal decrease at the point...
Please write down the details of reasons for your solutions. Thanks. Questions 2 a) Let f(x,y)...
Please write down the details of reasons for your solutions. Thanks. Questions 2 a) Let f(x,y) = sin (y^2 + e^(2x)). Find f(xy) and f(yx) and verify their equality. b) Find the equation of the tangent plane to the surface z=e^(2x)*cos(3y) at P (0, pi/3, -1) c) Find the direction in which the function f(x,y) = ((x-2y)/(2x+y))^(1/3) increases most rapidly at (1,0).
Let f(x,y) = xe^sin(x^2y+xy^2) /(x^2 + x^2y^2 + y^4)^3 . Compute ∂f ∂x (√2,0) pointwise.
Let f(x,y) = xe^sin(x^2y+xy^2) /(x^2 + x^2y^2 + y^4)^3 . Compute ∂f ∂x (√2,0) pointwise.