Question

Automata Please prove the following by induction. Let S(n) be the sum of squares from 1...

Automata

Please prove the following by induction. Let S(n) be the sum of squares from 1 to n, i.e., S(n)=1^2 + 2^2 + 3^2 + ... + n^2 Then S(n) = n(n+1)(2n+1)/6 = (2n^3+3n^2+n)/6

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤ 2 · 4n for all integers n ≥ 3. (b) Let f(n) = 2n+1 + 3n+1 and g(n) = 4n. Using the inequality from part (a) prove that f(n) = O(g(n)). You need to give a rigorous proof derived directly from the definition of O-notation, without using any theorems from class. (First, give a complete statement of the definition. Next, show how f(n) =...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
Find a formula for the sum of the squares of the numbers 1, 2, ...., n...
Find a formula for the sum of the squares of the numbers 1, 2, ...., n and prove it by induction.
Prove the summation by induction Σ i*2i (from i=1 to n ) = 1 * 21...
Prove the summation by induction Σ i*2i (from i=1 to n ) = 1 * 21 + 2*22  + 3*23 + ......n*2n
Let A = 3 1 0 2 Prove An = 3n 3n-2n   0 2n for all...
Let A = 3 1 0 2 Prove An = 3n 3n-2n   0 2n for all n ∈ N
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
Use induction to prove the following: - Prove that the sum of the first n odd...
Use induction to prove the following: - Prove that the sum of the first n odd integers is n2 writing a proof and then a program to go along with it.
can you please show all the steps thank you... Prove by induction that 3n < 2n  for...
can you please show all the steps thank you... Prove by induction that 3n < 2n  for all n ≥ ______. (You should figure out what number goes in the blank.) I know that the answer is n>= 4, nut I need to write the steps for induction
1) Find the sum S of the series where S = Σ i ai -- here...
1) Find the sum S of the series where S = Σ i ai -- here i varies from 1 to n. Use the mathematical induction to prove the following: 2) 13 + 33 + 53 + …. + (2n-1)3 = n2(2n2-1) 3) Show that n! > 2n for all n > 3. 4) Show that 9(9n -1) – 8n is divisible by 64. Show all the steps and calculations for each of the above and explain your answer in...
Problem 3. Let n ∈ N. Prove, using induction, that Σi^2= Σ(n + 1 − i)(2i...
Problem 3. Let n ∈ N. Prove, using induction, that Σi^2= Σ(n + 1 − i)(2i − 1). Note: Start by expanding the righthand side, then look at the following pyramid (see link) from
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT