Question

Prove the summation by induction Σ i*2i (from i=1 to n ) = 1 * 21...

Prove the summation by induction

Σ i*2i (from i=1 to n ) = 1 * 21 + 2*22  + 3*23 + ......n*2n

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the summation Σ i*2i (from i=1 to n ) = 1 * 21 + 2*22  +...
Prove the summation Σ i*2i (from i=1 to n ) = 1 * 21 + 2*22  + 3*23 + ......n*2n
Problem 3. Let n ∈ N. Prove, using induction, that Σi^2= Σ(n + 1 − i)(2i...
Problem 3. Let n ∈ N. Prove, using induction, that Σi^2= Σ(n + 1 − i)(2i − 1). Note: Start by expanding the righthand side, then look at the following pyramid (see link) from
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1...
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1 whenever n is a nonnegative integer.
Automata Please prove the following by induction. Let S(n) be the sum of squares from 1...
Automata Please prove the following by induction. Let S(n) be the sum of squares from 1 to n, i.e., S(n)=1^2 + 2^2 + 3^2 + ... + n^2 Then S(n) = n(n+1)(2n+1)/6 = (2n^3+3n^2+n)/6
Prove Summation of integers from 1 to n is n(n-1)/2
Prove Summation of integers from 1 to n is n(n-1)/2
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of...
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of induction: WOP, Ordinary or Strong, you plan to use.) proof: Answer goes here.
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n =...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n = 0, 1, 2, ....
1) Find the sum S of the series where S = Σ i ai -- here...
1) Find the sum S of the series where S = Σ i ai -- here i varies from 1 to n. Use the mathematical induction to prove the following: 2) 13 + 33 + 53 + …. + (2n-1)3 = n2(2n2-1) 3) Show that n! > 2n for all n > 3. 4) Show that 9(9n -1) – 8n is divisible by 64. Show all the steps and calculations for each of the above and explain your answer in...
Problem 3. Prove by induction that 1/ (1 · 3 )+ 1 /(3 · 5 )...
Problem 3. Prove by induction that 1/ (1 · 3 )+ 1 /(3 · 5 ) + · · · + 1 /(2n − 1) · (2n + 1) = n / 2n + 1 .
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT