Write a JAVA program for the following scenario. Given an n × n × n cube containing n3 cells. PLEASE NOTE THAT THIS BOARD HAS 3 DIMENSIONS. We are to place n queens in the cube so that no two queens challenge each other (so that no two queens are in the same row, column, or diagonal). In JAVA, implement it on your system to solve problem instances in which n = 4 and n = 8.
/* Java program to solve N Queen Problem using
backtracking */
public class NQueenProblem {
final int N = 4;
/* A utility function to print solution */
void printSolution(int board[][])
{
for (int i = 0; i < N; i++)
{
for (int j = 0;
j < N; j++)
System.out.print(" " + board[i][j]
+ " ");
System.out.println();
}
}
/* A utility function to check if a queen can
be placed on board[row][col]. Note that this
function is called when "col" queens are already
placeed in columns from 0 to col -1. So we need
to check only left side for attacking queens */
boolean isSafe(int board[][], int row, int col)
{
int i, j;
/* Check this row on left side
*/
for (i = 0; i < col; i++)
if
(board[row][i] == 1)
return false;
/* Check upper diagonal on left
side */
for (i = row, j = col; i >= 0
&& j >= 0; i--, j--)
if (board[i][j]
== 1)
return false;
/* Check lower diagonal on left
side */
for (i = row, j = col; j >= 0
&& i < N; i++, j--)
if (board[i][j]
== 1)
return false;
return true;
}
/* A recursive utility function to solve N
Queen problem */
boolean solveNQUtil(int board[][], int col)
{
/* base case: If all queens are
placed
then return true */
if (col >= N)
return true;
/* Consider this column and try
placing
this queen in all rows one by one
*/
for (int i = 0; i < N; i++)
{
/* Check if the
queen can be placed on
board[i][col]
*/
if
(isSafe(board, i, col)) {
/* Place this queen in board[i][col] */
board[i][col] = 1;
/* recur to place rest of the queens */
if (solveNQUtil(board, col + 1) == true)
return true;
/* If placing queen in board[i][col]
doesn't lead to a solution then
remove queen from board[i][col] */
board[i][col] = 0; // BACKTRACK
}
}
/* If the queen can not be
placed in any row in
this colum col, then return false
*/
return false;
}
/* This function solves the N Queen problem
using
Backtracking. It mainly uses solveNQUtil () to
solve the problem. It returns false if queens
cannot be placed, otherwise, return true and
prints placement of queens in the form of 1s.
Please note that there may be more than one
solutions, this function prints one of the
feasible solutions.*/
boolean solveNQ()
{
int board[][] = { { 0, 0, 0, 0
},
{ 0, 0, 0,
0 },
{ 0, 0, 0,
0 },
{ 0, 0, 0,
0 } };
if (solveNQUtil(board, 0) ==
false) {
System.out.print("Solution does not exist");
return
false;
}
printSolution(board);
return true;
}
// driver program to test above function
public static void main(String args[])
{
NQueenProblem Queen = new
NQueenProblem();
Queen.solveNQ();
}
}
Get Answers For Free
Most questions answered within 1 hours.