Question

the 20kg block starts from rest at point a, slides down the plane through the pool....

the 20kg block starts from rest at point a, slides down the plane through the pool. the friction forces acting to the block are 20N on the plane and 60N on the water. find the speed of the block when it travels 20M on the water

Homework Answers

Answer #1

The figure is shown below,

Here the intial velocity u is zero. and suppose the body is moving velocity a.

Draw the free body diagram of the part BC.

Thus, the speed of the block when it travels 20M on the water is 20.97 m/sec.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 4.0 block starts from rest and slides down a plane inclined at 60° horizonta l....
a 4.0 block starts from rest and slides down a plane inclined at 60° horizonta l. The coefficient of kinetic friction between the Surface and the block is 0.20. The work done by friction on the block is?
A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a...
A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.20 s. (a) Find the magnitude of the acceleration of the block. (m/s)^2 ​(b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. ​Magnitude N Direction (d) Find the speed of the block after it has slid 1.90 m.    (m/s^2)
A 1 kg block, starting from rest, slides down a 22 degree inclined plane that is...
A 1 kg block, starting from rest, slides down a 22 degree inclined plane that is .55m tall. At the bottom, the 1 kg block collides with a 3 kg block. The two blocks stick together and slide .52 m on a friction less horizontal surface for .52 sec. What is the speed of the 1kg block before it collides with the 3 kg block? What is the acceleration of the 1kg block as it travels down the inclined plane?...
A 5.000 kg mass starts from rest and slides down on an inclined plane that is...
A 5.000 kg mass starts from rest and slides down on an inclined plane that is 5 degrees above the horizontal. If friction causes the body to accelerate at 20%, determine magnitude and direction of friction force.
A block slides down an inclined plane, starting from rest and being pushed with a constant...
A block slides down an inclined plane, starting from rest and being pushed with a constant acceleration of 5.25 m/s2 over a distance of 18.0 cm. It then decelerates at a constant rate of 1.10 m/s2 (because of friction), until it again comes to rest. Find the total time the block is in motion.
A block of mass m = 2.10 kg starts from the rest and slides down a...
A block of mass m = 2.10 kg starts from the rest and slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. a) Determine the speed of the block with mass m = 2.10 kg after the...
2. A block slides down a plane inclined at 35o with respect to the horizontal, with...
2. A block slides down a plane inclined at 35o with respect to the horizontal, with coefficient of kinetic friction 0.2. Find the ratio of the time taken to slide down the plane starting from rest, compared to the time it would take to slide down the plane if it were frictionless. 3. A 20 kg block slides frictionlessly down an inclined plane that is 2.8 m long and 1.2 m high. A person pushes up against the block, parallel...
A block of mass 4.8 kg slides 24 m from rest down an inclined plane making...
A block of mass 4.8 kg slides 24 m from rest down an inclined plane making an angle of 24 o with the horizontal. If the block takes 10 s to slide down the plane, what is the retarding force due to friction?
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
If a block of mass 10 kg slides down an inclined plane having an angle of...
If a block of mass 10 kg slides down an inclined plane having an angle of 30 degrees above the horizon,at the end of the inclined plane there is a frictionless surface on the end of it lies a spring having spring constant 500N/m.There is friction on the inclined plane,Find the coefficient of kinetic friction of the inclined plane. when the block reaches the spring,it compresses it by 0.40m Let the block start from rest and the height be 20...