Question

A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a...

A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.20 s.
(a) Find the magnitude of the acceleration of the block. (m/s)^2

​(b) Find the coefficient of kinetic friction between block and plane.

(c) Find the friction force acting on the block.
Magnitude N
Direction


(d) Find the speed of the block after it has slid 1.90 m.    (m/s^2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 3.00 kg block starts from rest at the top of a 30° incline and accelerates...
A 3.00 kg block starts from rest at the top of a 30° incline and accelerates uniformly down the incline, moving 1.83 m in 1.80 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between the block and the incline. (c) Find the magnitude of the frictional force acting on the block. N (d) Find the speed of the block after it has slid a distance 1.83 m. m/s
A crate with a mass of 3.00 kg starts from rest at the top of a...
A crate with a mass of 3.00 kg starts from rest at the top of a 28.0° incline and slides 2.00 m down the incline in 1.25 s. (a) What is the magnitude of the acceleration of the crate (in m/s2)? 2.56 m/s2 correct b) What is the frictional force (in N) acting on the crate? (Enter the magnitude.) (c) What is the coefficient of kinetic friction between the crate and the incline? (d) What is the speed of the...
Starting from rest, a rectangular toy block with mass 350 g slides in 1.85 s all...
Starting from rest, a rectangular toy block with mass 350 g slides in 1.85 s all the way across a table 1.55 m in length that Zak has tilted at an angle of 42.5° to the horizontal. (a) What is the magnitude of the acceleration of the toy block? (b) What is the coefficient of kinetic friction between the block and the table? (c) What are the magnitude and direction of the friction force acting on the block? (d) What...
Starting from rest, a 2.97 kg block slides 2.44 m down a rough 39.4 ◦ incline....
Starting from rest, a 2.97 kg block slides 2.44 m down a rough 39.4 ◦ incline. The coefficient of kinetic friction between the block and the incline is 0.471. The acceleration of gravity is 9.8 m/s 2 . 1)Find the work done by the force of gravity. Answer in units of J. 2)Find the work done by the friction force between block and incline. Answer in units of J. 3)Find the work done by the normal force. Answer in units...
Starting from rest, a 4.30-kg block slides 1.80 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.30-kg block slides 1.80 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is ?k = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
Starting from rest, a 4.60-kg block slides 2.00 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.60-kg block slides 2.00 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is μk = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
A block with a mass of 12.0 kg is initially at rest at the top of...
A block with a mass of 12.0 kg is initially at rest at the top of a plane that is inclined at an angle of 30.0° above the horizontal. The block slides down the plane and is traveling with a speed of 1.50 m/s when it reaches the bottom. If the plane is 0.750 m long, what is the coefficient of kinetic friction between the block and the plane? please explain each step.
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough horizontal surface until it comes to rest. The coefficient of kinetic friction between the horizontal surface and the crate is 0.27. If the crate’s initial height is 9 m, find the distance it travels on the horizontal surface.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT