Question

Oxidative stress causes a molecule to gain a proton loss an electron lose a neutron gain...

Oxidative stress causes a molecule to

gain a proton

loss an electron

lose a neutron

gain an electron

Homework Answers

Answer #1

Oxidation : loss of electron is called oxidation.

e.g. sodium - (Na) = atomic number =11

electronic configuration : 1s2 ,2s2 ,2p6 ,3s1 . ground state electronic configuration.

in excited state of electronic configuration i.e. Na+1 electronic configuration is as follows

1s2,2s2,2p6,3s0.

here, sodium losses one electron from outermost shell therefore its oxidation state is +1.

From example it is clear that-

oxidative stress causes a molecule to a - LOSS AN ELECTRON

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
It was once thought that a neutron was made up of an electron and a proton...
It was once thought that a neutron was made up of an electron and a proton held together by Coulomb attraction. Assume the neutron radius is 10^-15m. (a) According to the uncertainty principle, find ∆p for such an electron. (b) The lowest average momentum such an electron could have would be 1/2 ∆p. What would be the corresponding energy? (c) What is the electrostatic potential energy of an electron 10^-13cm from a proton? (d) For the calculation in (b) and...
A free neutron will decay into a proton, an electron, and an antineutrino with a half-life...
A free neutron will decay into a proton, an electron, and an antineutrino with a half-life of 10.4 min. What is the maximum possible energy of the electron? What is the minimum energy? Assume the neutron is at rest. (Special Relativity Problem)
An electron, a neutron(which has zero charge) and a proton are in an electric field generated...
An electron, a neutron(which has zero charge) and a proton are in an electric field generated by charged plates which points in the +x direction. The three particles are sufficiently far apart that their forces on each other are negligible. Assume also that forces other than the electrostatic ones on the three particles are negligible. We know that: (Choose the correct answers) the acceleration of the electron is in the +x direction. the x coordinate of the electron is less...
A proton, a neutron, and an electron are trapped in identical one-dimensional infinite potential wells; each...
A proton, a neutron, and an electron are trapped in identical one-dimensional infinite potential wells; each particle in its ground state. a.) At the center of the wells, is the probability density for the proton greater than, less than, or equal to that of the electron? Explain. b.) At the center of the wells, is the probability density for the neutron greater than, less than, or equal to that of the electron? Explain.
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 8.32-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects.
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 4.48-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects.
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 5.83-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects.
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 4.70-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects. asking for x in meters
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 7.89-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects. *** Ive gotten 151.14 and it is incorrect**
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the...
a)How is it possible to determine if CaCO3 is Cl- free after synthesis? b)How can the Cl- ions be remove from CaCO3 after synthesis? I should answer the questions from the following experiment but if you know the answer and you are sure, yo do not need to read experiment. Please answer correctly because i hav no chance to make wrong :(((( Physical and Chemical Properties of Pure Substances Objective The aim of today’s experiment is to learn handling chemicals...