Question

Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...

Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 4.70-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects.

asking for x in meters

Homework Answers

Answer #1

Using a formula, we have

N / N0 = (1/2)t/t1/2

We know that, the number of neutrons decreased to 75% of its initial value.

(0.75 N0) / N0 = (1/2)t/(10.4)

(0.75) = (1/2)t/(10.4)

ln (1.5) = t / (10.4 min)

t = 4.21 min

convert min into sec -

t = 252.6 sec

Using a formula, we have

v = c 1 - E02 / E2

where, c = speed of light = 3 x 108 m/s

E0 = rest energy = m0 c2

v = (3 x 108 m/s) 1 - [(1.675 x 10-27 kg) (3 x 108 m/s) / (7.5302 x 10-19 J)]2

v = (3 x 108 m/s) (0.9949)

v = 2.98 x 108 m/s

Therefore, we get

distance x = v t = (2.98 x 108 m/s) (252.6 s)

x = 7.52 x 1010 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 8.32-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects.
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 4.48-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects.
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 5.83-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects.
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and...
Outside the nucleus, the neutron itself is radioactive and decays into a proton, an electron, and an antineutrino. The half-life of a neutron (mass = 1.675 × 10-27 kg) outside the nucleus is 10.4 min. On average, over what distance x would a beam of 7.89-eV neutrons travel before the number of neutrons decreased to 75.0% of its initial value? Ignore relativistic effects. *** Ive gotten 151.14 and it is incorrect**
A free neutron will decay into a proton, an electron, and an antineutrino with a half-life...
A free neutron will decay into a proton, an electron, and an antineutrino with a half-life of 10.4 min. What is the maximum possible energy of the electron? What is the minimum energy? Assume the neutron is at rest. (Special Relativity Problem)
A radioactive nucleus at rest decays into a second nucleus, an electron, and a neutrino. The...
A radioactive nucleus at rest decays into a second nucleus, an electron, and a neutrino. The electron and neutrino are emitted at right angles and have momenta of 9.10×10−23 kg⋅m/s and , 6.25×10−23 kg⋅m/s respectively. a) Determine the magnitude of the momentum of the second (recoiling) nucleus. b) Determine the direction of the momentum of the second (recoiling) nucleus. Assume that the neutrino and the electron move along −x and −y axes respectively.
A radioactive nucleus at rest decays into a second nucleus, electron, and neutrino. The electron and...
A radioactive nucleus at rest decays into a second nucleus, electron, and neutrino. The electron and neutrino are emitted at right angles. The electron has a momenta of 9.00x10^-23 kg m/s and the neutrino has a momenta of 6.65x10^-23 kg m/s. Determine the direction of the momentum of the second (recoiling) nucleus. Assume that neutrino moves along -x axis and the electron moves along the -y axis. The answer of theta needs to be the degrees counterclockwise from the +x...
1. In one inertial reference frame, an electron is observed traveling with a velocity of magnitude...
1. In one inertial reference frame, an electron is observed traveling with a velocity of magnitude v in the positive x-direction, where v is 0.6c. What are the momentum and total energy of the electron in that inertial reference frame in terms of v and the rest mass of the electron? What are the speed, momentum and energy of that electron as measured in a reference frame that is traveling at a velocity of magnitude v/2 in the positive x-direction?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT