Question

Chris performs an experiment in which he adds 6.52 g KNO3 to 76.55 mL of deionized...

Chris performs an experiment in which he adds 6.52 g KNO3 to 76.55 mL of deionized water in a coffee cup calorimeter. He calculates the enthalpy change of the solution for the process to be +196.12 J. This value can be expressed as the molar enthalpy change of dissolution for KNO3, in kJ/mol. What is Jorge's molar enthalpy change of dissolution (kJ/mol)?

Homework Answers

Answer #1

moles of KNO3 = mass/molarmass = 6.52/101 = 0.064 moles

0.064 moles of KNO3 enthalpy change ------> +196.12 J

1 mole of KNO3 enthalpy change ------> 196.12*1/0.064

                                                             = 3064.4 J

then in KJ/mol is represented as = 3.0644 KJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.58 g sample of KNO3 (f.w. + 101.11 u) was added to 98.57 g of...
A 2.58 g sample of KNO3 (f.w. + 101.11 u) was added to 98.57 g of water in a coffee-cup calorimeter. The initial temperature of water was 22.5 deg C, and he temperature of the solution after mixing was 20.4 deg C. On basis of this experiment, what is the heat of solution per mole of KNO3 (f.w. =101.11 g)? The specific heat of water is 4.184 J/g.K.
In a coffee-cup calorimeter experiment, 10.00 g of a soluble ionic compound was added to the...
In a coffee-cup calorimeter experiment, 10.00 g of a soluble ionic compound was added to the calorimeter containing 75.0 g H2O initially at 23.2°C. The temperature of the water increased to 31.8°C. What was the change in enthalpy for the dissolution of the compound? Give your answer in units of joules per gram of compound. Assume that the specific heat of the solution is the same as that of pure water, 4.18 J ⁄ (g ⋅ °C).
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 2.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution, ΔHsoln, of CaCl2 is −82.8 kJ/mol. The specific heat of water is CS=4.184 J/(g−K
The enthalpy change for the dissolution of NH4NO3 is +26.8 kJ/mol. When 40.0 g of NH4NO3...
The enthalpy change for the dissolution of NH4NO3 is +26.8 kJ/mol. When 40.0 g of NH4NO3 dissolves in 250.0 g of water in a coffee cup calorimeter, what will the final temperature of a solution be if it was initially at 25.0 °C? Assume that the heat capacity of the solution is the same as the specific heat of pure water, 4.184 J/(g·K). Hint: don't forget to add the masses of solute and solvent.
When a solid dissolves in water, the solution may become hotter or colder. The dissolution enthalpy...
When a solid dissolves in water, the solution may become hotter or colder. The dissolution enthalpy (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 10.13 g K2SO4(s) is dissolved in 114.80 g water, the temperature of the solution drops from 24.11 to 20.86 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.77 J/°C. Based on...
CHM2045L student Charles finds the mass of his stacked coffee cups (including the stir bar) to...
CHM2045L student Charles finds the mass of his stacked coffee cups (including the stir bar) to be 24.02 g. He adds 33.63 mL of deionized water (assume the density = 1.00 g/mL) to the coffee cup device, followed by 3.68 g of potassium nitrate (KNO3) to the coffee cup calorimeter device. The total mass of his solution is ________ g. Provide your answer to two digits after the decimal.
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 4.13 g of CuCl2(s) are dissolved in 111.70 g of water, the temperature of the solution increases from 25.33 to 28.58 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.89 J/°C....
A 3.98 g sample of solid NaBr (s) is dissolved in 361 mL of water in...
A 3.98 g sample of solid NaBr (s) is dissolved in 361 mL of water in a coffee cup calorimeter. Once all of the NaBr (s) is dissolved in the water, the final temperature of the solution is found to be 30.04°C. If the initial temperature of the water in the calorimeter was 21.84 °C, calculate the calorimeter constant (in J/K) for the coffee cup calorimeter. The heat of solvation of NaBr (s) is -0.60 kJ/mol.
A student determines the heat of dissolution of solid ammonium bromide using a coffee-cup calorimeter of...
A student determines the heat of dissolution of solid ammonium bromide using a coffee-cup calorimeter of negligible heat capacity. When 6.34 g of NH4Br(s) is dissolved in 119.00 g of water, the temperature of the solution drops from 25.00 to 22.76 °C. Based on the student's observation, calculate the enthalpy of dissolution of NH4Br(s) in kJ/mol. Assume the specific heat of the solution is 4.184 J/g°C. ΔHdissolution =  kJ/mol
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution...
When a solid dissolves in water, heat may be evolved or absorbed. The heat of dissolution (dissolving) can be determined using a coffee cup calorimeter. In the laboratory a general chemistry student finds that when 18.53 g of Cs2SO4(s) are dissolved in 100.40 g of water, the temperature of the solution drops from 25.54 to 22.92 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant) was determined in a separate experiment to be 1.85 J/°C....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT