Question

The light-emitting decay of excited mercury atoms is first-order, with a rate constant of 1.65E6 1/s....

The light-emitting decay of excited mercury atoms is first-order, with a rate constant of 1.65E6 1/s. A sample contains 7.6E-6 M of excited mercury atoms.

Find the time at which the concentration will be 4.5E-7 M.

Find the concentration after 2.5E-6 s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The light emitting decay of excited mercury atoms (Hg vapor lamps) is a first order reaction:...
The light emitting decay of excited mercury atoms (Hg vapor lamps) is a first order reaction: Hg(excited) --> Hg(ground state)​. The half life of the reaction is 4.2 x 10-7 s. An initial sample of excited mercury atoms has a concentration of 4.5 x 10-6 M. 1. How much time passes to reach a concentration of excited Hg atoms of 4.5 x 10-7 M? ​a) 5.5 x 106 s b) 3.4 x 103 s c) 7.2 x 10-3 s ​d)...
The first-order decomposition of N2O at a fixed temperature has a rate constant of 0.385 s-1....
The first-order decomposition of N2O at a fixed temperature has a rate constant of 0.385 s-1. If the initial concentration of N2O is 21.4 M, what is the concentration of N2O after 50 s?
The conversion of C5H11Br into C5H10 follows first-order kinetics, with a rate constant of 0.385 h-1....
The conversion of C5H11Br into C5H10 follows first-order kinetics, with a rate constant of 0.385 h-1. If the initial concentration of C5H11Br is 0.125 M, find: (a) the time(hours) at which the concentration will be 3.13 × 10-3 M. (b) the concentration(M) after 3.2 h of reaction.
A nuclear reaction involves the first order decay from and has a half-life of 5730 yr....
A nuclear reaction involves the first order decay from and has a half-life of 5730 yr. Living organisms have a 14C decay rate of 0.85 disintegrations per minute per gram of carbon. What is the value for the rate constant for this decay? If the initial concentration of 14C in a sample were 8.82 x 10-3 M, how much would remain after 936 years?
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
The decomposition of SO2Cl2 is first order in SO2Cl2 and has a rate constant of 1.44×10−4...
The decomposition of SO2Cl2 is first order in SO2Cl2 and has a rate constant of 1.44×10−4 s−1 at a certain temperature. If the initial concentration of SO2Cl2 is 1.00 M, how long will it take for the concentration to decrease to 0.72 M ? If the initial concentration of SO2Cl2 is 0.175 M , what is the concentration of SO2Cl2 after 460 s?
A chemical reaction that is first-order in X is observed to have a rate constant of...
A chemical reaction that is first-order in X is observed to have a rate constant of 2.1 × 10-2s-1. If the initial concentration of X is 1.0 M, what is the concentration of X after 195 s? A. 0.017 M B. 0.59 M C. 0.98 M D. 0.20 M E. 60 M
a.) The rate constant for the reaction is 0.460 M–1·s–1 at 200 °C. A--> products. If...
a.) The rate constant for the reaction is 0.460 M–1·s–1 at 200 °C. A--> products. If the initial concentration of A is 0.00680 M. what is the concentration after 315 s? b.)The rate constant for this zero-order reaction is 0.0190 M·s–1 at 300 °C. A--> products. How long (in seconds) would it take for the concentration of A to decrease from 0.800 M to 0.240 M? c.)The rate constant for this second-order reaction is 0.520 M–1·s–1 at 300 °C. A-->...
a.) The rate constant for the reaction is 0.460 M–1·s–1 at 200 °C. A--> products. If...
a.) The rate constant for the reaction is 0.460 M–1·s–1 at 200 °C. A--> products. If the initial concentration of A is 0.00680 M. what is the concentration after 315 s? b.)The rate constant for this zero-order reaction is 0.0190 M·s–1 at 300 °C. A--> products. How long (in seconds) would it take for the concentration of A to decrease from 0.800 M to 0.240 M? c.)The rate constant for this second-order reaction is 0.520 M–1·s–1 at 300 °C. A-->...