Question

Calculate the value of [N2]eq if [H2]eq = 2.0 M, [NH3]eq = 0.5 M, and Kc...

Calculate the value of [N2]eq if [H2]eq = 2.0 M, [NH3]eq = 0.5 M, and Kc = 2.

N2(g) + 3 H2(g) ⇌ 2 NH3(g)

Homework Answers

Answer #1

The equilibrium constant is the value of the reaction quotient where reaction touch the equilibrium.

The equilibrium constant of reaction can be denoted as .

Here the reaction is

The equilibrium constant can be written as:

Here

Now apply

Hence the concentration of .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A: 2 NH3 (g) + 46 kJ <-> N2 (g) + 3 H2 (g) For the...
A: 2 NH3 (g) + 46 kJ <-> N2 (g) + 3 H2 (g) For the reaction at equilibrium given above, give 2 ways that you can shift the equibrium to the left. B: 2 NH3(g) + 46 kJ <-> N2(g) + 3 H2(g) For the reaction at equilbrium given above, calculate the numeric value of Kc if the concentrations at equilibrium are 0.50 M NH3(g) , 0.44 M N2(g), and 0.20 M H2(g). C: 2 NH3(g) + 46 kJ...
A 2 L reaction vessel contains NH3, N2 and H2 at equilibrium at a certain temperature....
A 2 L reaction vessel contains NH3, N2 and H2 at equilibrium at a certain temperature. The equilibrium concentrations are [NH3] = 0.25 M, [N2] = 0.11 M and [H2] = 1.91 M. Calculate the equilibrium constant Kc for the synthesis of ammonia as described in the following reaction. N2 (g) + 3H2 (g) 2 NH3 (g) If 0.12 moles of N2 is then added to the reaction flask. Calculate the new equilibrium concentrations.
A) Calculate the value of ΔrG° for the reaction: N2 (g) + 3 H2 (g) →...
A) Calculate the value of ΔrG° for the reaction: N2 (g) + 3 H2 (g) → 2 NH3 (g) Write your answer in kJ to four significant figures Is the reaction spontaneous at 25°C? B) Calculate  ΔrG° at   540 ∘C Is the reaction spontaneous at   540 ∘C  ?
kc= 0.00592 for the reaction below at 351 K. N2 (g) + 3H2 (g) <----> 2NH3...
kc= 0.00592 for the reaction below at 351 K. N2 (g) + 3H2 (g) <----> 2NH3 (g). What is Kc at 351 K for the reaction: 1/3 N2 (g) +H2 (g)<--->2/3 NH3 (g)
The reaction N2(g) + 3H2(g) ⇌ 2NH3(g) has KC = 0.500 at 400*C. Write the reaction...
The reaction N2(g) + 3H2(g) ⇌ 2NH3(g) has KC = 0.500 at 400*C. Write the reaction quotient (QC) expression including the “i” subscripts. Then, find the value for QC if [N2] = 0.015 M, [H2] = 0.12 M, and [NH3] = 0.00054 M. Compare this value with KC and determine which direction the reaction will go towards.
5.0 moles of NH3 and 5.0 moles of H2 are introduced into a 4.00L flask. At...
5.0 moles of NH3 and 5.0 moles of H2 are introduced into a 4.00L flask. At equilibrium, 1.5 moles of NH3 gas remain. Calculate Kc for this reaction. 3H2(g) + N2(g) -> 2NH3(g)
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass...
Ammonia is produced using the Haber process: 3 H2 + N2 → 2 NH3 What mass of NH3 could be produced if 12.5 g H2 reacts with excess nitrogen? 4.13g, 105g, 142g, 70.4g
N2(g) + H2(g) → NH3(g)                                    Ammonia production is
N2(g) + H2(g) → NH3(g)                                    Ammonia production is one example of an industrial product. It is largely used for fertilizers. Since it has great significance, out of curiosity, please calculate (a) the standard reaction entropy = _______________ J/K.mol. 4 sig. figures normal format (default normal format). Given: Smϴ(NH3,g) = 192.45 J/K.mol Smϴ(N2,g) = 191.61 J/K.mol Smϴ(H2,g) = 130.68 J/K.mol ΔfHϴ(NH3,g) = -46.11 kJ/mol (b) the change in entropy of the surroundings (at 298 K) of the reaction by initially calculating...
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g) ...
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g)  N2 (g) + 3 H2 (g) Kc = 4.50 at 475˚C An unknown quantity of NH3 is placed in a reaction flask (with no N2 or H2) and is allowed to come to equilibrium at 475°C. The equilibrium concentration of H2 is then determined to be 0.252 M. Determine the initial concentration of NH3 placed in the flask
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT