Question

5.0 moles of NH3 and 5.0 moles of H2 are introduced into a 4.00L flask. At...

5.0 moles of NH3 and 5.0 moles of H2 are introduced into a 4.00L flask. At equilibrium, 1.5 moles of NH3 gas remain. Calculate Kc for this reaction. 3H2(g) + N2(g) -> 2NH3(g)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2 L reaction vessel contains NH3, N2 and H2 at equilibrium at a certain temperature....
A 2 L reaction vessel contains NH3, N2 and H2 at equilibrium at a certain temperature. The equilibrium concentrations are [NH3] = 0.25 M, [N2] = 0.11 M and [H2] = 1.91 M. Calculate the equilibrium constant Kc for the synthesis of ammonia as described in the following reaction. N2 (g) + 3H2 (g) 2 NH3 (g) If 0.12 moles of N2 is then added to the reaction flask. Calculate the new equilibrium concentrations.
-Consider the following reaction: 2HI(g) H2(g) + I2(g) If 3.69 moles of HI(g), 0.570 moles of...
-Consider the following reaction: 2HI(g) H2(g) + I2(g) If 3.69 moles of HI(g), 0.570 moles of H2, and 0.558 moles of I2 are at equilibrium in a 16.6 L container at 818 K, the value of the equilibrium constant, Kc, is_____________ .Consider the following reaction: 2NH3(g) N2(g) + 3H2(g) If 1.31×10-3 moles of NH3(g), 0.681 moles of N2, and 0.495 moles of H2 are at equilibrium in a 18.6 L container at 893 K, the value of the equilibrium constant,...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1. How many molecules (not moles) of NH3 are produced from 5.25×10−4 g of H2 ?
0.250 moles of H2 and 0.250 moles of I2 were placed in a 1.00 L flask...
0.250 moles of H2 and 0.250 moles of I2 were placed in a 1.00 L flask at 500˚. The equilibrium constant, Kc, for the reaction H2(g)+I2(g)-> 2HI(g) is 54.3. Calculate the equilibrium concentrations of all species.
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g) ...
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g)  N2 (g) + 3 H2 (g) Kc = 4.50 at 475˚C An unknown quantity of NH3 is placed in a reaction flask (with no N2 or H2) and is allowed to come to equilibrium at 475°C. The equilibrium concentration of H2 is then determined to be 0.252 M. Determine the initial concentration of NH3 placed in the flask
consider the following reaction: 2NH3 (g) <=> N2 (g) + 3H2 (g) if 7.92 x 10-4...
consider the following reaction: 2NH3 (g) <=> N2 (g) + 3H2 (g) if 7.92 x 10-4 moles of NH3, 0.336 moles of N2 and 0.287 moles of H2 are at equilibrium in a 10.2 L container at 884 K, the value of the equilibrium, Kp, is _
N2(g) + 3H2(g) →2NH3(g) If there is 10.02 g N2 and excess H2 present, the reaction...
N2(g) + 3H2(g) →2NH3(g) If there is 10.02 g N2 and excess H2 present, the reaction yields 9.47 g NH3. Calculate the percent yield for the reaction
At a certain temperature, .4211 mol of N2 and 1.801 mol H2 are placed in a...
At a certain temperature, .4211 mol of N2 and 1.801 mol H2 are placed in a 1.50L beaker. At Equilibrium, .1001 mol N2 is present. Calculate Kc. N2(g)+3H2(g) -->2NH3(g)
A: 2 NH3 (g) + 46 kJ <-> N2 (g) + 3 H2 (g) For the...
A: 2 NH3 (g) + 46 kJ <-> N2 (g) + 3 H2 (g) For the reaction at equilibrium given above, give 2 ways that you can shift the equibrium to the left. B: 2 NH3(g) + 46 kJ <-> N2(g) + 3 H2(g) For the reaction at equilbrium given above, calculate the numeric value of Kc if the concentrations at equilibrium are 0.50 M NH3(g) , 0.44 M N2(g), and 0.20 M H2(g). C: 2 NH3(g) + 46 kJ...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT