Question

A bomb calorimeter (C = 147 J/°C) contained 65 g of C4H4O (l) and excess O2...

A bomb calorimeter (C = 147 J/°C) contained 65 g of C4H4O (l) and excess O2 (g). The calorimeter was immersed in a 150. g water bath (Cwater = 4.19 J/g°C) and the calorimeter and the bath were equilibrated at 22.00 °C. The fuel was combusted, and the temperature of the calorimeter and the water bath were monitored independently. After 5 minutes, the calorimeter reached a maximum temperature of 25.04°C. At that time, the water bath had warmed to 22.62 °C.

a. Write the balanced reaction for the combustion of C4H4O (l).
b. Based on the data provided, estimate ΔE for the combustion of C4H4O (l).

c. Over time, the calorimeter and the water bath will come to a common final temperature (thermal equilibrium). Assuming no heat is lost to the environment, what is the final temperature reached by the calorimeter and the water bath?

Homework Answers

Answer #1

The balanced reaction is

a) C4H4O+4.5O2----> 4CO2+2H2O

b) Heat gained by calorimeter= C* temperature difference= 147*(25.04-22.00)=446.88 joules

Heat gained by water= mass* specific heat of water* temperature differenc= 150*4.18*(22.62-22)=388.74 joules

delE of combustion of C4H4O= heat gained by calorimeter + heat gained by water= 446.88+388.74=835.62 joules

c)

c) heat of combustion of Furan = 30 KJ/mole= 30000j/mole

mass of C4H4O= 65 gm molecular weight = (4*12+4+16)= 68

Moles of C4H4O= 65/68=0.96

1 moles produces =30000 joules

0.96 moles produces 30000*0.96=28800 joules

Let the final temperature be T

heat gained by calorimeter + heat gained by water= enthalpy change of combustion

147*(T-22)+150*4.19*(T-22)= 28800

775.5*(T-22)= 28800

T-22= 37.13

T= 37.13+22= 59.13 deg.c

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases...
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases from 24.90 °C to 27.80 °C. The calorimeter contains 1.05E3 g of water and the bomb has a heat capacity of 836 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of naphthalene burned (kJ/mol).
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases...
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases from 25.30 °C to 27.50 °C. The calorimeter contains 1.03E3 g of water and the bomb has a heat capacity of 856 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of bianthracene burned (kJ/mol).
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature...
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature increases from 24.40 °C to 27.57 °C. The calorimeter contains 1.08×103 g of water and the bomb has a heat capacity of 877 J/°C. The heat capacity of water is 4.184 J g-1°C-1. Based on this experiment, calculate ΔE for the combustion reaction per mole of diphenyl phthalate burned. ______ kJ/mol
When 0.455 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water...
When 0.455 g of anthracene, C14H10, is combusted in a bomb calorimeter that has a water jacket containing 500.0 g of water, the temperature of the water increases by 8.63 degrees C. Assuming that the specific heat of water is 4.18 J/(g degrees C) and that the heat absorption by the calorimeter is negligible, estimate the enthalpy of combustion per mole of anthracene.
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4170 g sample of L-ascorbic acid (C6H8O6) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.354×103 g of water. During the combustion the temperature increases from 24.92 to 27.68 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.5265 g sample of bisphenol A (C15H16O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.377×103 g of water. During the combustion the temperature increases from 21.79 to 24.65 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg...
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg of water the temperature rise of the water in the calorimeter was 57.0C. If the heat of combustion of the compound is 1,396 kJ/mol, what is the molar mass of the compound? Specific heat of water is 4.184 J/gC. Answer to 0 decimal places and enter the units.
Sulfur (2.56 g) is burned in a bomb calorimeter with excess O2(g). The temperature increases from...
Sulfur (2.56 g) is burned in a bomb calorimeter with excess O2(g). The temperature increases from 21.25 °C to 26.72 °C. The bomb has a heat capacity of 923 J/K, and the calorimeter contains 815 g of water. Calculate the heat evolved, per mole of SO2 formed, in the course of the reaction: S8(s) + 8 O2(g) --> 8 SO2(g) Answer is in kJ. A. 301.2 B. 3410 C. 296.3 D. 145.1