Question

When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg of water the temperature rise of the water in the calorimeter was 57.0C. If the heat of combustion of the compound is 1,396 kJ/mol, what is the molar mass of the compound? Specific heat of water is 4.184 J/gC. Answer to 0 decimal places and enter the units.

Answer #1

A 1.000 g sample of octane (C8H18) is burned in a bomb
calorimeter containing 1200 grams of water at an initial
temperature of 25.00ºC. After the reaction, the final temperature
of the water is 33.20ºC. The heat capacity of the calorimeter (also
known as the “calorimeter constant”) is 837 J/ºC. The specific heat
of water is 4.184 J/g ºC. Calculate the heat of combustion of
octane in kJ/mol.

A 0.553-g sample of diphenyl
phthalate
(C20H14O4) is
burned in a bomb calorimeter and the temperature increases from
24.40 °C to 27.57 °C. The
calorimeter contains 1.08×103 g of
water and the bomb has a heat capacity of 877
J/°C. The heat capacity of water is 4.184 J
g-1°C-1. Based on this experiment, calculate
ΔE for the combustion reaction per mole of diphenyl
phthalate burned.
______ kJ/mol

A 1.00 g sample of octane (C8H18) is burned in a calorimeter
that contains 1.20 kg of water. The temperature of the water and
the bomb rises from 25.00°C to 33.20°C. The heat capacity of the
bomb, Cbomb, is 837 J/0C . Specific heat for water: 4.184
Jg–1°C–1.
a) Calculate the amount of heat gained by the calorimeter
b) Calculate the amount of heat gained by the water
c) Calculate the amount of heat given off per mol of octane...

1.
A bomb calorimeter, or a constant
volume calorimeter, is a device often used to determine the heat of
combustion of fuels and the energy content of foods.
In an experiment, a 0.4137 g sample of
bianthracene
(C28H18) is burned
completely in a bomb calorimeter. The calorimeter is surrounded by
1.361×103 g of water. During the
combustion the temperature increases from 24.82 to
27.25 °C. The heat capacity of water is 4.184 J
g-1°C-1.
The heat capacity of the calorimeter...

When 1.020 g of ethanol (C2H6O, 46.07 g/mol) was burned in a
bomb calorimeter containing 2400. g of water, the temperature of
the water rose from 22.46 to 25.52ºC. The specific heat
of water is 4.18 J/g-°C. What is the enthalpy of combustion of 1
mol of ethanol? What is the heat capacity of the calorimeter?

A bomb calorimeter, or a constant
volume calorimeter, is a device often used to determine the heat of
combustion of fuels and the energy content of foods.
In an experiment, a 1.4170 g sample of
L-ascorbic acid
(C6H8O6) is
burned completely in a bomb calorimeter. The calorimeter is
surrounded by 1.354×103 g of water.
During the combustion the temperature increases from
24.92 to 27.68 °C. The heat
capacity of water is 4.184 J g-1°C-1.
The heat capacity of the calorimeter...

A 0.373-g sample of naphthalene (C10H8) is burned in a bomb
calorimeter and the temperature increases from 24.90 °C to 27.80
°C. The calorimeter contains 1.05E3 g of water and the bomb has a
heat capacity of 836 J/°C. Based on this experiment, calculate ΔE
for the combustion reaction per mole of naphthalene burned
(kJ/mol).

A 0.287-g sample of bianthracene (C28H18) is burned in a bomb
calorimeter and the temperature increases from 25.30 °C to 27.50
°C. The calorimeter contains 1.03E3 g of water and the bomb has a
heat capacity of 856 J/°C. Based on this experiment, calculate ΔE
for the combustion reaction per mole of bianthracene burned
(kJ/mol).

. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb
calorimeter containing 650 grams of water at an initial temperature
of 20.00 oC. After the reaction, the final temperature of the water
is 26.4ºC. The heat capacity of the calorimeter is 420 J/oC. Using
these data, calculate the heat of combustion of naphthalene in
kJ/mol.

A 12.8 g sample of ethanol (C2H5OH) is
burned in a bomb calorimeter with a heat capacity of 5.65
kJ/°C. The temperature of the calorimeter and the contents
increases from 25°C to 35°C. What is the heat of
combustion per mole of ethanol? The molar mass of ethanol is 46.07
g/mol.
C2H5OH (l) + 3 O2 (g) -----> 2 CO2 (g) + 3
H2O (g) ΔE = ?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 hours ago

asked 5 minutes ago

asked 5 minutes ago

asked 10 minutes ago

asked 10 minutes ago

asked 15 minutes ago

asked 15 minutes ago

asked 15 minutes ago

asked 15 minutes ago

asked 17 minutes ago

asked 18 minutes ago

asked 20 minutes ago