Question

A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...

A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was determined in a previous experiment to be 909.2 J/°C. Assuming that no energy is lost to the surroundings, calculate the molar heat of combustion of phenanthrene based on these data. C14H10(s) + (33/2) O2(g) 5 H2O(l) + 14 CO2(g) + Energy

Solve for Molar Heat of Combustion = kJ/mol

Homework Answers

Answer #1

Heat released in reaction = heat absorbed by water + heat absorbed by calorimeter

           = specifi cheat of water x temp change x mass of water +   specific heat of calorimter x temp change

       = ( 4.184 x ( 24.54-22.04) x 1284)   + ( 909.2 x ( 24.54-22.04)

    = 13430.64 + 2273   = 15703 J = 15.7 KJ

Moles of sample = mass/molar mass = 0.3833 /178.23 = 0.00215

Molar heat of conmbustion in KJ/mol = ( 15.7/0.00215) = 7304 KJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.5265 g sample of bisphenol A (C15H16O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.377×103 g of water. During the combustion the temperature increases from 21.79 to 24.65 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4170 g sample of L-ascorbic acid (C6H8O6) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.354×103 g of water. During the combustion the temperature increases from 24.92 to 27.68 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature...
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature increases from 24.40 °C to 27.57 °C. The calorimeter contains 1.08×103 g of water and the bomb has a heat capacity of 877 J/°C. The heat capacity of water is 4.184 J g-1°C-1. Based on this experiment, calculate ΔE for the combustion reaction per mole of diphenyl phthalate burned. ______ kJ/mol
an alternative approach to bomb calorimeters is to establish the heat capacity of the calorimeter,, exclusive...
an alternative approach to bomb calorimeters is to establish the heat capacity of the calorimeter,, exclusive (without the presence of) the water it contains. the heat absorbed by the water and by the rest of the calorimeter must be calculated separately and then added together. a bomb calorimeter assembly containing 983.5g of water is calibrated by the combustion of 1.354g anthracene (C14H10(s)) . the temperature rises from 24.87 to 35.63 degrees C in this reaction. once calibrated, when 1.053g of...
A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently,...
A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently, the temperature rose by 5.56°C. If the heat capacity of the bomb plus water was 8.09 kJ / °C, calculate the molar heat of combustion of methanol.
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams...
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams of water at an initial temperature of 25.00ºC. After the reaction, the final temperature of the water is 33.20ºC. The heat capacity of the calorimeter (also known as the “calorimeter constant”) is 837 J/ºC. The specific heat of water is 4.184 J/g ºC. Calculate the heat of combustion of octane in kJ/mol.
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg...
When 86.6 g of a compound was burned in a bomb calorimeter that contained 0.184 kg of water the temperature rise of the water in the calorimeter was 57.0C. If the heat of combustion of the compound is 1,396 kJ/mol, what is the molar mass of the compound? Specific heat of water is 4.184 J/gC. Answer to 0 decimal places and enter the units.
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases...
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases from 24.90 °C to 27.80 °C. The calorimeter contains 1.05E3 g of water and the bomb has a heat capacity of 836 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of naphthalene burned (kJ/mol).
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases...
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases from 25.30 °C to 27.50 °C. The calorimeter contains 1.03E3 g of water and the bomb has a heat capacity of 856 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of bianthracene burned (kJ/mol).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT