Question

Let X represent the quantity V 2 with dimensions (length)6. Give a reason that X is...

Let X represent the quantity V 2 with dimensions (length)6. Give a reason that X is or is not an extensive property. Give a reason that X is or is not an intensive property.

Homework Answers

Answer #1

Answer:

Intensive or intrinsic properties, are those that do not depend on the amount of substance or size of a body, so that the value remains unchanged at the initial system subdivided into several subsystems , for this reason are not additive properties. So X is not a INTENSIVE PROPERTIE.

Extensive or extrinsic properties are those which depend on the amount of substance or size of a body. They are magnitudes whose value is proportional to the size of the system described . These quantities may be expressed as the sum of the magnitudes of a set of subsystems which form the original system. So X is a EXTENSIVE PROPERTIE.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let x,y,z denote the dimensions of a rectangular box open at top. If the function V(x,y,z)=a...
Let x,y,z denote the dimensions of a rectangular box open at top. If the function V(x,y,z)=a gives the volume, where a= 24,  find the minimum amount  of material required for its construction.
True or false (give a reason if true or a counterexample if false): (a) If u...
True or false (give a reason if true or a counterexample if false): (a) If u is perpendicular (in three dimensions) to v and w, those vectors v and w are parallel. " (b) If u is perpendicular to v and w, then u is perpendicular to v + 2 w, (c) If u and v are perpendicular unit vectors then II u - v" = ,.,fi,
Let X X represent the full length of a certain species of newt. Assume that X...
Let X X represent the full length of a certain species of newt. Assume that X has a normal probability distribution with mean 216.4 inches and standard deviation 5 inches. You intend to measure a random sample of n = 114 newts. The bell curve below represents the distribution of these sample means. The scale on the horizontal axis is the standard error of the sampling distribution. Complete the indicated boxes, with μ ¯ x  and σ ¯ x to three...
1. Let u(x) and v(x) be functions such that u(1)=2,u′(1)=3,v(1)=6,v′(1)=−1 If f(x)=u(x)v(x), what is f′(1). Explain...
1. Let u(x) and v(x) be functions such that u(1)=2,u′(1)=3,v(1)=6,v′(1)=−1 If f(x)=u(x)v(x), what is f′(1). Explain how you arrive at your answer. 2. If f(x) is a function such that f(5)=9 and f′(5)=−4, what is the equation of the tangent line to the graph of y=f(x) at the point x=5? Explain how you arrive at your answer. 3. Find the equation of the tangent line to the function g(x)=xx−2 at the point (3,3). Explain how you arrive at your answer....
Let T:V-->V be a linear transformation and let T^3(x)=0 for all x in V. Prove that...
Let T:V-->V be a linear transformation and let T^3(x)=0 for all x in V. Prove that R(T^2) is a subset of N(T).
Let X represent the number that occurs when a 6-sided red die is tossed and Y...
Let X represent the number that occurs when a 6-sided red die is tossed and Y the number that occurs when a 6-sided green die is tossed. Find the variance of the random variable 6X-Y.
Let V be the set of polynomials of the form ax + (a^2)(x^2), for all real...
Let V be the set of polynomials of the form ax + (a^2)(x^2), for all real numbers a. Is V a subspace of P?
let x=u+v. y=v find dS, the a vector, and ds^2 for the u,v coordinate system and...
let x=u+v. y=v find dS, the a vector, and ds^2 for the u,v coordinate system and show that it is not an orthogonal system
Calculate the quantity of interest please. a) Let X,Y be jointly continuous random variables generated as...
Calculate the quantity of interest please. a) Let X,Y be jointly continuous random variables generated as follows: Select X = x as a uniform random variable on [0,1]. Then, select Y as a Gaussian random variable with mean x and variance 1. Compute E[Y ]. b) Let X,Y be jointly Gaussian, with mean E[X] = E[Y ] = 0, variances V ar[X] = 1,V ar[Y ] = 1 and covariance Cov[X,Y ] = 0.4. Compute E[(X + 2Y )2].
Let y = x 2 + 3 be a curve in the plane. (a) Give a...
Let y = x 2 + 3 be a curve in the plane. (a) Give a vector-valued function ~r(t) for the curve y = x 2 + 3. (b) Find the curvature (κ) of ~r(t) at the point (0, 3). [Hint: do not try to find the entire function for κ and then plug in t = 0. Instead, find |~v(0)| and dT~ dt (0) so that κ(0) = 1 |~v(0)| dT~ dt (0) .] (c) Find the center and...