Question

Let V be the set of polynomials of the form ax + (a^2)(x^2), for all real...

Let V be the set of polynomials of the form ax + (a^2)(x^2), for all real numbers a. Is V a subspace of P?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let H be the set of all polynomials of the form p(t) = at2 where a...
Let H be the set of all polynomials of the form p(t) = at2 where a ∈ R with a ≥ 0. Determine if H is a subspace of P2. Justify your answers.
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.
Let ℙn be the set of real polynomials of degree at most n, and write p′...
Let ℙn be the set of real polynomials of degree at most n, and write p′ for the derivative of p. Show that S={p∈ℙ9:p(2)=−1p′(2)} is a subspace of ℙ9.
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show...
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show that this is a ring under ordinary addition and multiplication of polynomials. What are the units of R[x] ? I need a legible, detailed explaination
If V is a vector space of polynomials of degree n with real numbers as coefficients,...
If V is a vector space of polynomials of degree n with real numbers as coefficients, over R, and W is generated by the polynomials (x 3 + 2x 2 − 2x + 1, x3 + 3x 2 − x + 4, 2x 3 + x 2 − 7x − 7), then is W a subspace of V , and if so, determine its basis.
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1....
Let f(x) be a cubic polynomial of the form x^3 +ax^2 +bx+c with real coefficients. 1. Deduce that either f(x) factors in R[x] as the product of three degree-one polynomials, or f(x) factors in R[x] as the product of a degree-one polynomial and an irreducible degree-two polynomial. 2.Deduce that either f(x) has three real roots (counting multiplicities) or f(x) has one real root and two non-real (complex) roots that are complex conjugates of each other.
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial is vector space over the field R under usual polynomial addition and scalar multiplication. Further, find the basis for the space of polynomial p(x) of degree ≤ 3. Find a basis for the subspace with p(1) = 0.
Let P2 denote the vector space of polynomials in x with real coefficients having degree at...
Let P2 denote the vector space of polynomials in x with real coefficients having degree at most 2. Let W be a subspace of P2 given by the span of {x2−x+6,−x2+2x−1,x+5}. Show that W is a proper subspace of P2.
Let P be the vector space of all polynomials in x with real coefficients. Does P...
Let P be the vector space of all polynomials in x with real coefficients. Does P have a basis? Prove your answer.
4) Let V be the subspace of C[a,b] spanned by e^x ; e^−x and let Ax...
4) Let V be the subspace of C[a,b] spanned by e^x ; e^−x and let Ax be the anti-differentiation operator that also holds the constant of integration to be zero. Example: Ax(2e^−x ) = −2e^−x . Find the matrix that represents Ax() in the standard ordered basis e^x ; e^−x and call that matrix A. Find the matrix that represents Ax() in the non-standard ordered basis cosh(x); sinh(x) and call that matrix B. And write matrices A and B as...