Question

If the enthalpy change for the reaction below is ΔH = 198 kJ, how many grams...

If the enthalpy change for the reaction below is ΔH = 198 kJ, how many grams of sulfur dioxide are produced when 387 kJ is absorbed?

2 SO3 (g) + 198 kJ --> 2 SO2 (g) + O2 (g)

SO2 molar mass = 64.07 g/mol

SO3 molar mass = 80.07 g/mol

Report your answer in grams with the correct number of significant figures

Homework Answers

Answer #1

2 SO3 (g) + 198 kJ --> 2 SO2 (g) + O2 (g)

SO2 molar mass = 64.07 g/mol

SO3 molar mass = 80.07 g/mol

According to the problem

In producing two moles of SO2 , 198 kJ is absorbed

Thus,

198 KJ/ 2 mole SO2 = 99 KJ / moles

Now amount of energy = 387 KJ

Then calculate the number of moles as follows:

Amount of energy / energy per moles

= 387 KJ/ 99 KJ / moles SO2

= 3.91 Moles SO2

Amount in g = number of moles * molar mass

= 3.91 Moles SO2 *64.07 g/mol

= 250.5 g SO2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The reaction below has an enthalpy change of 198 kJ. How many grams of sulfur dioxide...
The reaction below has an enthalpy change of 198 kJ. How many grams of sulfur dioxide are produced when 564 kJ is absorbed? 2 SO3 (g) → 2 SO2 (g) + O2 (g)
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report your answer to two decimal places in standard notation. H2S(g) + 2O2(g) → SO3(g) + H2O(l) H2S (g): -20.60 kJ/mol O2 (g): 0.00 kJ/mol SO3 (g): -395.77 kJ/mol H2O (l): -285.83 kJ/mol 2. Calculate the amount of heat absorbed/released (in kJ) when 22.54 grams of SO3 are produced via the above reaction. Report your answer to two decimal places, and use appropriate signs to...
Given the following reactions 2S (s) + 3O2 (g)  → 2SO3 (g)  ΔH = -790 kJ S (s)...
Given the following reactions 2S (s) + 3O2 (g)  → 2SO3 (g)  ΔH = -790 kJ S (s) + O2 (g)  → SO2(g) ΔH = -297 kJ the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide 2SO2 (g) + O2 (g)  → 2SO3 (g) is ________ kJ.
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the standard heat...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the heat of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the standard heat...
Use the standard reaction enthalpies given below to determine ΔH°rxn for the following reaction: 2 S(s)...
Use the standard reaction enthalpies given below to determine ΔH°rxn for the following reaction: 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH°rxn = ? Given: SO2(g) → S(s) + O2(g) ΔH°rxn = +296.8 kJ 2 SO2(g) + O2(g) → 2 SO3(g) ΔH°rxn = -197.8 kJ Please explain in detail.
Calculate the standard enthalpy change, ΔH°rxn, in kJ for the following chemical equation, using only the...
Calculate the standard enthalpy change, ΔH°rxn, in kJ for the following chemical equation, using only the thermochemical equations below: 4KO2(s) + 2H2O(l) → 4KOH(aq) + 3O2(g) Report your answer to three significant figures in scientific notation. Equations:   ΔH°rxn (kJ) 4K(s) + O2(g) → 2K2O(s) -726.4 K(s) + O2(g) → KO2(s) -284.5 K2O(s) + H2O(l) → 2KOH(aq) -318
Given the data 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH = −790 kJ S(s)...
Given the data 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH = −790 kJ S(s) + O2(g) → SO2(g) ΔH = −297 kJ SO3(g) + H2O(l) → H2SO4(l) ΔH = −132 kJ use Hess's law to calculate ΔH for the reaction 2 SO2(g) + O2(g) → 2 SO3(g).
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance   ΔH∘f (kJ/mol) NO(g)   90.2 O2(g)   0 NO2(g)   33.2 Then the standard heat...