Question

The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...

The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction.

Consider, for example, the reaction

2NO(g)+O2(g)⇌2NO2(g)

with heat of formation values given by the following table:

Substance ΔH∘f
(kJ/mol)
NO(g) 90.2
O2(g) 0
NO2(g) 33.2

Then the standard heat of reaction for the overall reaction is

ΔH∘rxn===ΔH∘f(products)2(33.2)−114 kJ

For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)?

You do not need to look up any values to answer this question.

Check all that apply.

Hints

Check all that apply.

Na(s)+12Cl2(g)→NaCl(s)
Na(s)+12Cl2(l)→NaCl(s)
SO3(g)→12O2(g)+SO2(g)
2Na(s)+Cl2(g)→2NaCl(s)
SO(g)+12O2(g)→SO2(g)
S(s)+O2(g)→SO2(g)

Homework Answers

Answer #1

ΔHrxn = ΔHf [product(s)]

This will be true only when all the reactants used in given chemical reaction are in their native state.

This is the case with reactions

Na(s)+12Cl2(g)→NaCl(s)

2Na(s)+Cl2(g)→2NaCl(s)

S(s)+O2(g)→SO2(g)

Where, Na (s), Cl2 (g) S(s) & O2(g) both are in the so-called elemental state.

Note: Cl2(l) or Cl2 (s) state are not elemental states.

Hence Answe options : (1), (4), (6).

=================XXXXXXXXXXXXXXXX=======================

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the standard heat...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the heat of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance   ΔH∘f (kJ/mol) NO(g)   90.2 O2(g)   0 NO2(g)   33.2 Then the standard heat...
Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) Then the standard heat of reaction for the overall reaction...
Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) Then the standard heat of reaction for the overall reaction is ΔH∘rxn=ΔH∘f(products)−−ΔH∘f(reactants) ΔH∘rxn=2(33.2)-[2(90.2)+0]= -114kJ Part A For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do not need to look up any values to answer this question. Check all that apply. Na(s)+12Cl2(l)→NaCl(s) 2Na(s)+Cl2(g)→2NaCl(s) Na(s)+12Cl2(g)→NaCl(s) H2(g)+12O2(g)→H2O(g) 2H2(g)+O2(g)→2H2O(g) H2O2(g)→12O2(g)+H2O(g) Part B The combustion of heptane, C7H16, occurs via the reaction C7H16(g)+11O2(g)→7CO2(g)+8H2O(g) with heat of formation values given by the following...
For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do...
For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do not need to look up any values to answer this question. Check all that apply. Hints Check all that apply. H2(g)+12O2(g)→H2O(g) Na(s)+12Cl2(g)→NaCl(s) 2Na(s)+Cl2(g)→2NaCl(s) H2O2(g)→12O2(g)+H2O(g) Na(s)+12Cl2(l)→NaCl(s) 2H2(g)+O2(g)→2H2O(g)
Part A For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)?...
Part A For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do not need to look up any values to answer this question. Check all that apply. Hints Check all that apply. S(s)+O2(g)→SO2(g) Li(s)+12F2(g)→LiF(s) SO(g)+12O2(g)→SO2(g) SO3(g)→12O2(g)+SO2(g) 2Li(s)+F2(g)→2LiF(s) Li(s)+12F2(l)→LiF(s) Part B The combustion of propane, C3H8, occurs via the reaction C3H8(g)+5O2(g)→3CO2(g)+4H2O(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) C3H8 (g) -104.7 CO2(g) −393.5 H2O(g) −241.8 Calculate the enthalpy for...
Calculate the enthalpy of the reaction 2NO(g)+O2(g)→2NO2(g) given the following reactions and enthalpies of formation: 12N2(g)+O2(g)→NO2(g),   ΔH∘A=33.2...
Calculate the enthalpy of the reaction 2NO(g)+O2(g)→2NO2(g) given the following reactions and enthalpies of formation: 12N2(g)+O2(g)→NO2(g),   ΔH∘A=33.2 kJ 12N2(g)+12O2(g)→NO(g),  ΔH∘B=90.2 kJ
For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do...
For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do not need to look up any values to answer this question. Check all that apply. Check all that apply. Na(s)+12F2(g)→NaF(s) SO(g)+12O2(g)→SO2(g) Na(s)+12F2(l)→NaF(s) 2Na(s)+F2(g)→2NaF(s) SO3(g)→12O2(g)+SO2(g) S(s)+O2(g)→SO2(g)
For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do...
For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do not need to look up any values to answer this question. Check all that apply. Hints Check all that apply. 2Li(s)+F2(g)→2LiF(s) S(s)+O2(g)→SO2(g) SO3(g)→12O2(g)+SO2(g) Li(s)+12F2(l)→LiF(s) SO(g)+12O2(g)→SO2(g) Li(s)+12F2(g)→LiF(s)
Part A For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)?...
Part A For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)? You do not need to look up any values to answer this question. Check all that apply. Check all that apply. 1)Li(s)+12F2(l)→LiF(s) .2) SO3(g)→12O2(g)+SO2(g). 3) SO(g)+12O2(g)→SO2(g) . 4) 2Li(s)+F2(g)→2LiF(s). 5)S(s)+O2(g)→SO2(g) .6) Li(s)+12F2(g)→LiF(s)