Question

13. Propane burns in air according to the following equation: C3H8 (g) + 5 O2 (g)...

13. Propane burns in air according to the following equation:

C3H8 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (g) ∆H = -2043 kJ

If 5.00 g of propane are reacted at a constant pressure of 1.15 atm leading to a change in volume of +8.6 L, calculate ∆E and the work done (in kJ). (MM C3H8 = 44.09 g/mol).

Using the information given (∆Hrxn = -2043 kJ) and any needed values from you text, calculate the ∆H o f for propane (C3H8).

Homework Answers

Answer #1

Ans:

C3H8 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O   ∆H = -2043 kJ

P = 1.15 atm, w = 5 gm, ∆V = 8.6 L, MW of C3H8 = 44.06 g/mol

1) As system is doing work on the surroundings,

W = - P∆V = - 1.15 atm X 8.6 L = - 9.89 X 0.101325 KJ

            Therefore, W = - 1.0021 KJ.

2) ΔHreaction = qat constant pressure = qreaction

Hence, q = - 2043 KJ

∆E = q + W = -2043 + (-1.0021)

= - 2.044 X 103 KJ.

3) ∆Ho = 5 X 10-3 kg X 1000 g/1 kg X 1 mol/44.09 g X – 2043 KJ/1 mol

= - 2.316 X 102 KJ.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When 1.000 g of propane gas (C3H8) is burned at 25ºC and 1.00 atm, H2O (l)...
When 1.000 g of propane gas (C3H8) is burned at 25ºC and 1.00 atm, H2O (l) and CO2 (g) are formed with the evolution of 50.33 kJ of energy. Substance ∆Hºf (kJ mol -1) Sº (J mol -1 K -1) H2O (l) - 285.8 69.95 CO2 (g) - 393.5 213.7 O2 (g) 0.0 205.0 C3H8 (g) ? 270.2 Calculate the molar enthalpy of combustion, ∆Hºcomb , of propane and the standard molar enthalpy of formation, ∆Hºf , of propane gas.
Consider the Combustion of Propane (C3H8)by O2 and H2o.                              C3H8 +5O2 --> 3Co2+ 4H2o D
Consider the Combustion of Propane (C3H8)by O2 and H2o.                              C3H8 +5O2 --> 3Co2+ 4H2o D)    At standard temperature and pressure, what volume of oxygen would be required to burn 100 g of propane? If air is 21 percent oxygen, what volume of air at STP would be required? E) At standard temperature and pressure, what volume of Co2 would be produced when 100g of propane are burned?
18. Butane gas burns according to the following exothermic reaction: C4H10 (g) + 13/2 O2 (g)...
18. Butane gas burns according to the following exothermic reaction: C4H10 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (g) ∆H°rxn = - 2877.1 kJ a) If 25.0 g of butane were burned, how much energy would be released? b) If the reaction of 25.0 g of butane produced a volume change of 15.4 L against an external pressure of 748 mmHg, calculate the work done (in J). c) Calculate the change in internal energy (∆E)...
Consider the balanced equation for the combustion of propane, C3H8 C3H8(g) + 5O2(g)  3CO2(g) +...
Consider the balanced equation for the combustion of propane, C3H8 C3H8(g) + 5O2(g)  3CO2(g) + 4H2O(l) If propane reacts with oxygen as above a. what is the limiting reagent in a mixture containing 5.00 g of C3H8 and 10.0 g of O2? b. what mass of the excess reagent remains after the reaction ? c. what mass of CO2 is formed when 1.00 g of C3H8 reacts completely?
Calculate the deltaH rxn for the production of CO2 and H20 via propane combustion, using thermochemical...
Calculate the deltaH rxn for the production of CO2 and H20 via propane combustion, using thermochemical equations below. Show all work! 3 C (s) + 4 H2 (g) = C3H8 (g) Delta H = (-) 103.9 kJ/mol C (s) + O2 (g) = CO2 (g) Delta H = (-) 393.5 kJ/mol H2 (g) + 1/2 O2 (g) = H2O (g) Delta H = (-)241. 8 kJ/mol Delta H rxn : ?
Propane (C3H8) burns in oxygen to form carbon dioxide and water. A 0.5000 g sample of...
Propane (C3H8) burns in oxygen to form carbon dioxide and water. A 0.5000 g sample of propane was burned in a bomb calorimeter whose total heat capacity is 17.15 kJ/K. The temperature of the calorimeter apparatus increased by 2.591 K. Calculate the heat of combustion per mole of propane.
Butane, the fuel used in cigarette lighters, burns according to the equation: 2 C4H10 (g) +...
Butane, the fuel used in cigarette lighters, burns according to the equation: 2 C4H10 (g) + 13 O2 (g)  8 CO2 (g) + 10 H2O(g) H = – 5316 kJ a) Calculate the mass of oxygen that must react in order for this reaction to generate 2150 kJ of heat b) Calculate the amount of heat, including sign, that is transferred when 75.0 g of butane react completely.
In a laboratory experiment 24.239 g of methane is burned in air containing O2 to form...
In a laboratory experiment 24.239 g of methane is burned in air containing O2 to form gaseous CO2 and H2O. Calculate the final temperature in °C of the product mixture if the methane and air are both at an initial temperature of 1.3°C. Assume a stoichiometric ratio of methane to oxygen from the air, with air being 21% O2 by volume and the rest of the volume being N2 (c of CO2 = 57.2 J/molK; c of H2O(g) = 36.0...
Consider C3H8 (g) + 5 O2 (g) à 3 CO2 (g) + 4 H2O (l), with...
Consider C3H8 (g) + 5 O2 (g) à 3 CO2 (g) + 4 H2O (l), with the reaction being at equilibrium. ∆Ho = -2220 kJ.    What effect will increasing the temperature have on the system?
19.4 g of butane (58.12 g/mol) undergoes combustion according to the following equation. What pressure of...
19.4 g of butane (58.12 g/mol) undergoes combustion according to the following equation. What pressure of carbon dioxide in atm is produced at 309 K in a 1.15 L flask. 2 C4H10(g) + 13 O2 (g) → 8 CO2 (g) + 10 H2O (g)