Question

Butane, the fuel used in cigarette lighters, burns according to the equation: 2 C4H10 (g) +...

Butane, the fuel used in cigarette lighters, burns according to the equation: 2 C4H10 (g) + 13 O2 (g)  8 CO2 (g) + 10 H2O(g) H = – 5316 kJ a) Calculate the mass of oxygen that must react in order for this reaction to generate 2150 kJ of heat b) Calculate the amount of heat, including sign, that is transferred when 75.0 g of butane react completely.

Homework Answers

Answer #1

2C4H10 + 13O2 ------------> 8CO2 + 10H2O delta H = -5316kJ

That is 2 moles of butane on reaction with 13 moles of oxygen completely, give 5316 kJ of heat

To generate 2150Kj of heat we need

= 2150kJ x 13 moles /5316kJ

= 5.2577 moles of oxygen

Thus mass of oxygen required to produce 2150kJ of heat =

= 5.2577 moles of oxygen x 32g/mol

= 168.25 g of oxygen

part b) According to the equation when

2 moles ( 2x58g/mol) of butane is burnt completely the heat produced = 5316kJ

Thus 75 g of butane on burning completely produces =

= 75 gx5316kJ/(2x58) g

= 3437 kJ

Thus heat produced = -3437 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Butane C4H10 is a common fuel found in cigarette lighters. When butane burns, it combines with...
Butane C4H10 is a common fuel found in cigarette lighters. When butane burns, it combines with oxygen to produce carbon dioxide and water. A student burned a 5.00-gram sample of butane. Show all calculations in solving the following problems. 1. Write the balanced equation for the combustion of butane. 2. Find the number of moles of butane in 5.00 grams. 3. Find the number of moles of oxygen that will react with 5.00 g of butane. 4. Find the number...
18. Butane gas burns according to the following exothermic reaction: C4H10 (g) + 13/2 O2 (g)...
18. Butane gas burns according to the following exothermic reaction: C4H10 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (g) ∆H°rxn = - 2877.1 kJ a) If 25.0 g of butane were burned, how much energy would be released? b) If the reaction of 25.0 g of butane produced a volume change of 15.4 L against an external pressure of 748 mmHg, calculate the work done (in J). c) Calculate the change in internal energy (∆E)...
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters....
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.01 bar and 23 ∘C, what is the volume of carbon dioxide formed by the combustion of 2.60 g of butane?
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters....
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.00 atm and 23 ∘C, what is the volume of carbon dioxide formed by the combustion of 1.60 g of butane?
Butane, C4H10 , is a component of natural gas that is used as fuel for cigarette...
Butane, C4H10 , is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.00 atm and 23 ∘C , what is the volume of carbon dioxide formed by the combustion of 1.60 g of butane? Express your answer with the appropriate units. volume of CO2 =
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters....
Butane, C4H10, is a component of natural gas that is used as fuel for cigarette lighters. The balanced equation of the complete combustion of butane is 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(l) At 1.00 atm and 23 ∘C, what is the volume of carbon dioxide formed by the combustion of 2.80 g of butane? what is the volume of CO2?The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant R equals 0.08206...
A) Butane combusts according to the equation: C4H10(g)+132O2(g)→4CO2(g)+5H2O(g) ΔHrxn=−2658kJ - What mass of butane in grams...
A) Butane combusts according to the equation: C4H10(g)+132O2(g)→4CO2(g)+5H2O(g) ΔHrxn=−2658kJ - What mass of butane in grams is necessary to produce 1.1×103 kJ kJ of heat? Express your answer to two significant figures and include the appropriate units. - What mass of CO2 is produced? Express your answer to two significant figures and include the appropriate units. B) Charcoal is primarily carbon. What mass of CO2 is produced if you burn enough carbon (in the form of charcoal) to produce 5.10×102kJ...
(a) Consider the combustion of butane, given below: 2 C4H10(g) + 13 O2(g) 8 CO2(g) +...
(a) Consider the combustion of butane, given below: 2 C4H10(g) + 13 O2(g) 8 CO2(g) + 10 H2O(g) If C4H10(g) is decreasing at the rate of 0.850 mol/s, what are the rates of change of O2(g), CO2(g), and H2O(g)? O2(g)/t = mol/s CO2(g)/t = mol/s H2O(g)/t = mol/s (b) The decomposition reaction given below: 2 IF5(g) 1 I2(g) + 5 F2(g) is carried out in a closed reaction vessel. If the partial pressure of IF5(g) is decreasing at the rate...
Mass C4H10 Mass O2 Mass CO2 Mass H2O 1.31 g 5.72g 11.12g 8.84g 222 mg 148mg...
Mass C4H10 Mass O2 Mass CO2 Mass H2O 1.31 g 5.72g 11.12g 8.84g 222 mg 148mg Consider the following balanced equation for the combustion of butane, a fuel often used in lighters. 2C4H10(g)+13O2(g)?8CO2(g)+10H2O(g) Complete the following table, showing the appropriate masses of reactants and products. If the mass of a reactant is provided, fill in the mass of other reactants required to completely react with the given mass, as well as the mass of each product formed. If the mass...
14.7 g of butane (58.12 g/mol) undergoes combustion according to the following equation. What pressure of...
14.7 g of butane (58.12 g/mol) undergoes combustion according to the following equation. What pressure of carbon dioxide in atm is produced at 318 K in a 1.58 L flask. 2 C4H10 (g) + 13 O2 (g) → 8 CO2 (g) + 10 H2O (g)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT