Question

If G is some group where φ : G → G is some function given by...

If G is some group where φ : GG is some function given by φ(g) = g−1 for every gG. Prove φ is an isomorphism of groups IFF G is abelian

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
Suppose φ : G → G′ is an isomorphism. (a) Prove that φ(Z(G)) = Z(G′). (b)...
Suppose φ : G → G′ is an isomorphism. (a) Prove that φ(Z(G)) = Z(G′). (b) Prove that |g| = |φ(g)| for all g ∈ G
Prove that for a group G and g in G, Phi(g)=g^-1 is an automorphism of G...
Prove that for a group G and g in G, Phi(g)=g^-1 is an automorphism of G IFF G is abelian.
Suppose G, H be groups and φ : G → H be a group homomorphism. Then...
Suppose G, H be groups and φ : G → H be a group homomorphism. Then the for any subgroup K of G, the image φ (K) = {y ∈ H | y = f(x) for some x ∈ G} is a group a group in H.
An Introduction of the Theory of Groups - Fourth Edition (Joseph J. Rotman) Let G be...
An Introduction of the Theory of Groups - Fourth Edition (Joseph J. Rotman) Let G be a finite abelian group of odd order. Prove that the mapping φ : G → G given by g → g2 is an automorphism.
A) Prove that a group G is abelian iff (ab)^2=a^2b^2 fir any two ekemwnts a abd...
A) Prove that a group G is abelian iff (ab)^2=a^2b^2 fir any two ekemwnts a abd b in G. B) Provide an example of a finite abelian group. C) Provide an example of an infinite non-abelian group.
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then...
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then the set (φ)^{-1}[{φ(a)}] ={x∈G|φ(x)} =φ(a) is the left coset aH of H, and is also the right coset Ha of H. Consequently, the two partitions of G into left cosets and into right cosets of H are the same
Letφ:G→G′is a group homomorphism. Prove that φ is one-to-one if and only if Ker(φ) ={e}.
Letφ:G→G′is a group homomorphism. Prove that φ is one-to-one if and only if Ker(φ) ={e}.
Prove that the map φ : Q( √ 3) → Q( √ 3) given by a...
Prove that the map φ : Q( √ 3) → Q( √ 3) given by a + b √ 3 → a − b √ 3 is an isomorphism of fields.
Prove that the map φ : Q( √ 3) → Q( √ 3) given by a...
Prove that the map φ : Q( √ 3) → Q( √ 3) given by a + b √ 3 → a − b √ 3 is an isomorphism of fields.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT