Question

Suppose G, H be groups and φ : G → H be a group homomorphism. Then...

Suppose G, H be groups and φ : G → H be a group homomorphism. Then the for any subgroup K of G, the image φ (K) = {y ∈ H | y = f(x) for some x ∈ G}

is a group a group in H.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let φ:G ——H be a group homomorphism and K=ker(φ). Assume that xK=yK. Prove that φ(x)=φ(y)
Let φ:G ——H be a group homomorphism and K=ker(φ). Assume that xK=yK. Prove that φ(x)=φ(y)
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then...
Prove the following theorem: Let φ: G→G′ be a group homomorphism, and let H=ker(φ). Let a∈G.Then the set (φ)^{-1}[{φ(a)}] ={x∈G|φ(x)} =φ(a) is the left coset aH of H, and is also the right coset Ha of H. Consequently, the two partitions of G into left cosets and into right cosets of H are the same
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be...
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be a normal subgroup of G contained in ker(ϕ). Define a mapping ψ: G/N -> H by ψ (aN)= ϕ (a) for all a in G. Prove that ψ is a well-defined homomorphism from G/N to H. Is ψ always an isomorphism? Prove it or give a counterexample
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a...
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a subgroup of H and define f^-1(J) ={x is an element of G| f(x) is an element of J} a. Show ker(f)⊂f^-1(J) and ker(f) is a normal subgroup of f^-1(J) b. Let p: f^-1(J) --> J be defined by p(x) = f(x). Show p is a surjective homomorphism c. Show the set kef(f) and ker(p) are equal d. Show J is isomorphic to f^-1(J)/ker(f)
Let φ : A → B be a group homomorphism. Prove that ker φ is a...
Let φ : A → B be a group homomorphism. Prove that ker φ is a normal subgroup of A.
Let G be a group and α : G → H be a homomorphism of groups...
Let G be a group and α : G → H be a homomorphism of groups with H abelian. Show that α factors via G/[G, G], i.e. there exists a homomorphism β : G/[G, G] −→ H, such that α = β◦q, where q : G −→ G/[G, G] is the quotient homomorphis
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite...
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite order n. (a) Prove that f(a) has finite order k, where k is a divisor of n. (b) If f is an isomorphism, prove that k=n.
Let φ : G → G′ be an onto homomorphism and let N be a normal...
Let φ : G → G′ be an onto homomorphism and let N be a normal subgroup of G. Prove that φ(N) is a normal subgroup of G′.
Suppose φ:Q→Z is a homomorphism (both groups are under addition). Prove that φ is the zero...
Suppose φ:Q→Z is a homomorphism (both groups are under addition). Prove that φ is the zero map, i.e., φ(x) = 0 for all x ∈ Q.
Please explain it in detail. Let φ∶G → H be a homomorphism with H abelian. Show...
Please explain it in detail. Let φ∶G → H be a homomorphism with H abelian. Show that G/ ker φ must be abelian.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT