Question

Prove that if n is an integer and 3 is a factor of n 2 ,...

Prove that if n is an integer and 3 is a factor of n 2 , then 3 is a factor of n.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Prove every integer n ≥ 2 has a prime factor. (You cannot just cite the Funda-...
Prove every integer n ≥ 2 has a prime factor. (You cannot just cite the Funda- mental Theorem of Arithmetic; this was the first step in proving the Fundamental Theorem of Arithmetic
Prove or disprove that 3|(n^3 − n) for every positive integer n.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4)....
a) Prove: If n is the square of some integer, then n /≡ 3 (mod 4). (/≡ means not congruent to) b) Prove: No integer in the sequence 11, 111, 1111, 11111, 111111, . . . is the square of an integer.
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2....
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2. (b) What’s the GCD (N + 2, N) if N is an odd integer?
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
Show 2 different solutions to the task. Prove that for every integer n (...-3, -2, -1,...
Show 2 different solutions to the task. Prove that for every integer n (...-3, -2, -1, 0, 1, 2, 3, 4...), the expression n2 + n will always be even.
Prove that every integer of the form 5n + 3 for n ∈ Z, n ≥...
Prove that every integer of the form 5n + 3 for n ∈ Z, n ≥ 1, cannot be a perfect square
Prove let n be an integer. Then the following are equivalent. 1. n is an even...
Prove let n be an integer. Then the following are equivalent. 1. n is an even integer. 2.n=2a+2 for some integer a 3.n=2b-2 for some integer b 4.n=2c+144 for some integer c 5. n=2d+10 for some integer d
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT