Question

Prove every integer n ≥ 2 has a prime factor. (You cannot just cite the Funda-...

Prove every integer n ≥ 2 has a prime factor. (You cannot just cite the Funda- mental Theorem of Arithmetic; this was the first step in proving the Fundamental Theorem of Arithmetic

Homework Answers

Answer #1

We use strong induction for this proof.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The Fundamental Theorem of Arithmetic states: Every integer greater than or equal to 2 has...
1. The Fundamental Theorem of Arithmetic states: Every integer greater than or equal to 2 has a unique factorization into prime integers. Prove by induction the uniqueness part of the Fundamental Theorem of Arithmetic.
Prove that a positive integer n, n > 1, is a perfect square if and only...
Prove that a positive integer n, n > 1, is a perfect square if and only if when we write n = P1e1P2e2... Prer with each Pi prime and p1 < ... < pr, every exponent ei is even. (Hint: use the Fundamental Theorem of Arithmetic!)
A positive integer n is called "powerful" if, for every prime factor p of n, p2...
A positive integer n is called "powerful" if, for every prime factor p of n, p2 is also a factor of n. An example of a powerful number is A) 240 B) 297 C) 300 D) 336 E) 392
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive...
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive integers n with n ≥ 2, n has a prime factor.
Prove that if n is an integer and 3 is a factor of n 2 ,...
Prove that if n is an integer and 3 is a factor of n 2 , then 3 is a factor of n.
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove this by directly proving the negation.Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides,or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
Prove that every integer of the form 5n + 3 for n ∈ Z, n ≥...
Prove that every integer of the form 5n + 3 for n ∈ Z, n ≥ 1, cannot be a perfect square
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT