Question

The integral ∫-1(bottom) to 0 ∫sqrt(−1−x2)(bottom) to 0 −4/(−5+sqrt(x^2+y^2)dydx is very hard to do. If you...

The integral ∫-1(bottom) to 0 ∫sqrt(−1−x2)(bottom) to 0 −4/(−5+sqrt(x^2+y^2)dydx is very hard to do. If you put it in polar form it's much easier, ∫ba∫dc f(r,θ)r drdθ it's much easier, but you need to work out the new limits. Find a,b,c,d and the value of the integral.

a=

b=

c=

d=

∫-1(bottom) to 0∫-sqrt(1−x^2)(bottom) to 0 a/(b+sqrt(x^2+y^2)dydx=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the following double integral by first converting to polar coordinates: S(2,0)S(sqrt(4-x^2),-sqrt(4-x^2))e^(x^2+y^2)dydx
Evaluate the following double integral by first converting to polar coordinates: S(2,0)S(sqrt(4-x^2),-sqrt(4-x^2))e^(x^2+y^2)dydx
Evaluate the following double integral by first converting to polar coordinates: SS(e^(x^2+y^2)dydx 0 ≤ x ≤...
Evaluate the following double integral by first converting to polar coordinates: SS(e^(x^2+y^2)dydx 0 ≤ x ≤ 2, -(sqrt(4-x^2)) ≤ t ≤ sqrt(4-x^2)
Consider Z 4 0 Z √ 6x−x2 √ 4x−x2 y dydx + Z 6 4 Z...
Consider Z 4 0 Z √ 6x−x2 √ 4x−x2 y dydx + Z 6 4 Z √ 6x−x2 0 y dydx (a) [3 pts.] Sketch the region of integration. (b) [7 pts.] Evaluate the integral. You may need to change the coordinate system
Find the integral that represents: The volume of the solid under the cone z = sqrt(x^2...
Find the integral that represents: The volume of the solid under the cone z = sqrt(x^2 + y^2) and over the ring 4 ≤ x^2 + y^2 ≤ 25 The volume of the solid under the plane 6x + 4y + z = 12 and on the disk with boundary x2 + y2 = y. The area of ​​the smallest region, enclosed by the spiral rθ = 1, the circles r = 1 and r = 3 & the polar...
57. a. Use polar coordinates to compute the (double integral (sub R)?? x dA, R x2...
57. a. Use polar coordinates to compute the (double integral (sub R)?? x dA, R x2 + y2) where R is the region in the first quadrant between the circles x2 + y2 = 1 and x2 + y2 = 2. b. Set up but do not evaluate a double integral for the mass of the lamina D={(x,y):1≤x≤3, 1≤y≤x3} with density function ρ(x, y) = 1 + x2 + y2. c. Compute??? the (triple integral of ez/ydV), where E= {(x,y,z):...
Quesiton: Compute the surface integral of f(x,y,z)=x^2 over z=sqrt(x^2+y^2), 0<=z<=1.
Quesiton: Compute the surface integral of f(x,y,z)=x^2 over z=sqrt(x^2+y^2), 0<=z<=1.
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the...
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the general solution, y(t), which solves the problem below, by the method of integrating factors. 8t dy/dt +y=t^3, t>0 Put the problem in standard form. Then find the integrating factor, μ(t)= ,__________ and finally find y(t)= __________ . (use C as the unkown constant.) d) Solve the following initial value problem: t dy/dt+6y=7t with y(1)=2 Put the problem in standard form. Then find the integrating...
Compute the surface integral of f(x,y,z)=x^2 over z=sqrt(x^2+y^2), 0<=z<=1. Write answer as simply as possible. Note...
Compute the surface integral of f(x,y,z)=x^2 over z=sqrt(x^2+y^2), 0<=z<=1. Write answer as simply as possible. Note that this is 8 points and you have two attempts. ex) 5 π 2 write 5sqrt(pi)/2 Don't use any spaces and put in the conventional order, numbers outside square root first. Rationalize denominators. Use * for multiplication if necessary.
I need to evaluate the double integral:I from 0 to 3, I from 0 to sqrt(9-y^2),...
I need to evaluate the double integral:I from 0 to 3, I from 0 to sqrt(9-y^2), integrand is Sqrt(1+x^2 + y^2)dxdy. I know I need to convert to polar coordinates: x = rcos theta, y = rsin- theta. The integrand becomes sqrt(1+r^2)?????. I know how to integrate that, but I don’t know how to convert the bounds for the integrals. I think for dtheta, because we go from the x-axis to the y-axis, so we go from 0 to pi/2....
Let D={ (x,y) : x2+y2 ≤ 4x+5 and y≥ 0 } . Express the double integral...
Let D={ (x,y) : x2+y2 ≤ 4x+5 and y≥ 0 } . Express the double integral I = f(x, y) dA D as an iterated integral. I = f(x, y) dx dy=?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT