Question

Determine if each of the following series converges or diverges showing all the work including all...

Determine if each of the following series converges or diverges showing all the work including all the tests used.

a. Σ (n=2 to infinity) 3^n+2/ln n

b. Σ (n=1 to infinity) (-3)^n/n^3 2^n

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine if each of the following series converges or diverges showing all the work including all...
Determine if each of the following series converges or diverges showing all the work including all the tests used. Find the sum if the series converges. a. Σ (n=1 to infinity) (3^n+1/ 7^n) b. Σ (n=0 to infinity) e^n/e^n + n
Determine whether the following series converges or diverges:∞∑n=1 ln(1 +1/n).
Determine whether the following series converges or diverges:∞∑n=1 ln(1 +1/n).
Determine if the series converges or diverges (show your work): n! / nn
Determine if the series converges or diverges (show your work): n! / nn
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to...
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to infinity) sin(4n)/4^n
Given: Sigma (infinity) (n=1) sin((2n-1)pi/2)ne^-n Question: Determine if the series converges or diverges Additional: If converges,...
Given: Sigma (infinity) (n=1) sin((2n-1)pi/2)ne^-n Question: Determine if the series converges or diverges Additional: If converges, is it conditional or absolute?
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges....
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges. Show your work. What series did you use for the comparison? How did you figure out the behavior (converge or diverge) of the series that you used for the comparison?
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from n=1 to infinity of (1/n!) b) sigma from n=1 to infinity of (2n)!/(3n) Use the ROOT test to determine whether the series converges or diverges. a) sigma from n=1 to infinity of    (tan-1(n))-n b) sigma from n=1 to infinity of ((-2n)/(n+1))5n For each series, use and state any appropriate tests to decide if it converges or diverges. Be sure to verify all necessary...
Determine where series converges or diverges: ∑(-1)n(n!)2/(2n)!
Determine where series converges or diverges: ∑(-1)n(n!)2/(2n)!
Determine if the series converges or diverges. Justify your answer by stating the test used and...
Determine if the series converges or diverges. Justify your answer by stating the test used and the conditions of the test. \sum _{n=0}^{\infty } [100+\sqrt{n}]/[4n^2-6n+1]
Determine whether each of the following series converges or not. (Name the test you use. You...
Determine whether each of the following series converges or not. (Name the test you use. You do not have to evaluate the sums of these series). Please write as big and neatly as possible in your answer, demonstrating all steps. a) Sum infinity n = 1 of square root n/n^3+1 b) Sum infinity n = 2 of 1/nln(n)