Question

The paraboloid z = 5 − x − x2 − 2y2 intersects the plane x =...

The paraboloid

z = 5 − xx2 − 2y2

intersects the plane x = 4 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point

(4, 2, −23).

(Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The paraboloid z = 5 − x − x2 − 2y2 intersects the plane x =...
The paraboloid z = 5 − x − x2 − 2y2 intersects the plane x = 1 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point (1, 4, −29). (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t.)
(1) The paraboloid z = 9 − x − x2 − 7y2 intersects the plane x...
(1) The paraboloid z = 9 − x − x2 − 7y2 intersects the plane x = 1 in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point (1, 2, −21). (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t.) (2)Find the first partial derivatives of the function. (Sn = x1 + 2x2 + ... + nxn; i = 1,...
Find equations of the following. x2 − 3y2 + z2 + yz = 52,    (7, 2, −5)...
Find equations of the following. x2 − 3y2 + z2 + yz = 52,    (7, 2, −5) (a) the tangent plane (b) parametric equations of the normal line to the given surface at the specified point. (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t.)   
The paraboloid z = 3x2 + 2y2 + 1 and the plane 2x – y +...
The paraboloid z = 3x2 + 2y2 + 1 and the plane 2x – y + z = 4 intersect in a curve C. Find the points on C that have a maximum and minimum distance from the origin. The point on C is the maximum distance from the origin is (___ , ____ , ____).    The point on C is the minimum distance from the origin is (____ , ____ , ____). So for this question I get...
(a) Show that the parametric equations x = x1 + (x2 − x1)t,    y = y1 +...
(a) Show that the parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t where 0 ≤ t ≤ 1, describe (in words) the line segment that joins the points P1(x1, y1) and P2(x2, y2). (b) Find parametric equations to represent the line segment from (−1, 6) to (1, −2). (Enter your answer as a comma-separated list of equations. Let x and y be in terms of t.)
The plane y+z=2 intersects the ‘funky’ cylinder x^2 + y^4 =17 in a curve C. A)...
The plane y+z=2 intersects the ‘funky’ cylinder x^2 + y^4 =17 in a curve C. A) Find a parametric equation of the tangent line to C at the point (4,1,1) B) How was the direction vector found in part A and how do you know its the right direction?
Find a parametric representation for the surface. The part of the sphere x2 + y2 +...
Find a parametric representation for the surface. The part of the sphere x2 + y2 + z2 = 16 that lies above the conez = x2 + y2 . (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of u and/or v.) where z > x2 + y2
Find a set of parametric equations for the tangent line to the curve of intersection of...
Find a set of parametric equations for the tangent line to the curve of intersection of the surfaces at the given point. (Enter your answers as a comma-separated list of equations.) z = x2 + y2,    z = 9 − y,    (3, −1, 10)
say that point (x, y, z) is the plane tangent to the paraboloid z = x...
say that point (x, y, z) is the plane tangent to the paraboloid z = x ^ 2 + 3y ^ 2 parallel to the plane z = x + y
Find the volume of the solid that lies under the paraboloid z=2x2+2y2 above the xy-plane, and...
Find the volume of the solid that lies under the paraboloid z=2x2+2y2 above the xy-plane, and inside the cylinder x2+y2=8y
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT