Question

(16) Prove that {3 k | k ∈ Z} is a subgroup of Q∗

(16) Prove that {3 k | k ∈ Z} is a subgroup of Q∗

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and...
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and q are prime numbers and p < q, then 2p + q^2 is odd (Hint: all prime numbers greater than 2 are odd)
Let H and K be subgroups of G. Prove that H ∪ K is a subgroup...
Let H and K be subgroups of G. Prove that H ∪ K is a subgroup of G iff H ⊆ K or K ⊆ H.
If H and K are arbitrary subgroups of G. Prove that HK is a subgroup of...
If H and K are arbitrary subgroups of G. Prove that HK is a subgroup of G if and only if HK=KH.
Prove that for all n ∈ Z, there exists a k ∈ Z such that n^3...
Prove that for all n ∈ Z, there exists a k ∈ Z such that n^3 = 9k, n^3 = 9k + 1, or n^3 = 9k − 1.
3. a) Suppose that H is a proper subgroup of Z that contains 12, 30, and...
3. a) Suppose that H is a proper subgroup of Z that contains 12, 30, and 54. What are the possibilities for what H could be? (HINT: You may use without proof that all subgroups of Z are of the formnZ. We will prove this fact later in the semester.) b) Now, suppose that H is a proper subgroup of Z that contains a and b. What are the possibilities for what H could be?
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove...
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove that C1 is a subgroup of Z × Z. (b) Let n ≥ 2 be an integer, and let Cn = {(a, b) | a ≡ b( mod n)}. Prove that Cn is a subgroup of Z × Z. (c) Prove that every proper subgroup of Z × Z that contains C1 has the form Cn for some positive integer n.
Prove thatAnis a normal subgroup of Sn. Prove both that it is a subgroup AND that...
Prove thatAnis a normal subgroup of Sn. Prove both that it is a subgroup AND that it is normal
(a) Prove or disprove: if H and K are subgroups of G, then H ∩ K...
(a) Prove or disprove: if H and K are subgroups of G, then H ∩ K is a subgroup of G. (b) Prove or disprove: if H is an abelian subgroup of G, then G is abelian
Let G be an Abelian group and let H be a subgroup of G Define K...
Let G be an Abelian group and let H be a subgroup of G Define K = { g∈ G | g3 ∈ H }. Prove that K is a subgroup of G .
3. a) For any group G and any a∈G, prove that given any k∈Z+, C(a) ⊆...
3. a) For any group G and any a∈G, prove that given any k∈Z+, C(a) ⊆ C(ak). (HINT: You are being asked to show that C(a) is a subset of C(ak). You can prove this by proving that if x ∈ C(a), then x must also be an element of C(ak) for any positive integer k.) b) Is it necessarily true that C(a) = C(ak) for any k ∈ Z+? Either prove or disprove this claim.