Question

3. a) For any group G and any a∈G, prove that given any k∈Z+, C(a) ⊆...

3. a) For any group G and any a∈G, prove that given any k∈Z+, C(a) ⊆ C(ak).

(HINT: You are being asked to show that C(a) is a subset of C(ak). You can prove this by proving that if x ∈ C(a), then x must also be an element of C(ak) for any positive integer k.)

b) Is it necessarily true that C(a) = C(ak) for any k ∈ Z+? Either prove or disprove this claim.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...
Prove that, for any group G, G/Z(G) is isomorphic to Inn(G)
Prove that, for any group G, G/Z(G) is isomorphic to Inn(G)
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G...
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5. Note, Sylow Theorem is above us so we can't use it. We're up to Finite Orders. Thank you.
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.
Let a be an element of order n in a group and d = gcd(n,k) where...
Let a be an element of order n in a group and d = gcd(n,k) where k is a positive integer. a) Prove that <a^k> = <a^d> b) Prove that |a^k| = n/d c) Use the parts you proved above to find all the cyclic subgroups and their orders when |a| = 100.
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
True/False, explain: 1. If G is a finite group and G28, then there is a subgroup...
True/False, explain: 1. If G is a finite group and G28, then there is a subgroup of G of order 2401=74 2. If |G|=19, then G is isomorphic to Z19. 3. If F subset of K is a degree 5 field extension, any element b in K is the root of some polynomial p(x) in F[x] 4. If F subset of K is a degree 5 field extension, viewing K as a vector space over F, Aut(K, F) consists of...
G is a finite group. We have shown that C(g) ≤ G for any g ∈...
G is a finite group. We have shown that C(g) ≤ G for any g ∈ G. Regarding the cosets of C(g): 1. The elements in the same coset all have something in common that distinguishes them from the other cosets. Figure out what it is, state it clearly, and prove it. 2. Find a bijection between cl(g) and the set of cosets G/C(g) = { aC(g) | a ∈ G }. State it clearly and prove that it is...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
(a) Prove that if y = 4k for k ≥ 1, then there exists a primitive...
(a) Prove that if y = 4k for k ≥ 1, then there exists a primitive Pythagorean triple (x, y, z) containing y. (b) Prove that if x = 2k+1 is any odd positive integer greater than 1, then there exists a primitive Pythagorean triple (x, y, z) containing x. (c) Find primitive Pythagorean triples (x, y, z) for each of z = 25, 65, 85. Then show that there is no primitive Pythagorean triple (x, y, z) with z...