Question

use the fundamental theorem of arithmetic to prove: if a divides bc and gcd(a,b)=1 then a...

use the fundamental theorem of arithmetic to prove:

if a divides bc and gcd(a,b)=1 then a divides c.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive...
Without using the Fundamental Theorem of Arithmetic, use strong induction to prove that for all positive integers n with n ≥ 2, n has a prime factor.
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c...
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c x gcd(a, b). (Note that c gcd(a, b) means c times the greatest common division of a and b) (b) What is the greatest common divisor of a − 1 and a + 1? (There are two different cases you need to consider.)
1. The Fundamental Theorem of Arithmetic states: Every integer greater than or equal to 2 has...
1. The Fundamental Theorem of Arithmetic states: Every integer greater than or equal to 2 has a unique factorization into prime integers. Prove by induction the uniqueness part of the Fundamental Theorem of Arithmetic.
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
Let a, b, and c be integers such that a divides b and a divides c....
Let a, b, and c be integers such that a divides b and a divides c. 1. State formally what it means for a divides c using the definition of divides 2. Prove, using the definition, that a divides bc.
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod...
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod m2) if and only if (meaning prove both ways) a ≡ b (mod m1m2). Hint: If a | bc and a is relatively prime to to b then a | c.
suppose p is a prime number and p2 divides ab and gcd(a,b)=1. Show p2 divides a...
suppose p is a prime number and p2 divides ab and gcd(a,b)=1. Show p2 divides a or p2 divides b.
Let a and b be non-zero integers. Do not appeal to the fundamental theorem of arithmetic...
Let a and b be non-zero integers. Do not appeal to the fundamental theorem of arithmetic to do to this problem. Show that if a and b have a least common multiple it is unique.
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT