Question

DIFFERENTIAL EQUATIONS: An object stretches a spring 5 cm in equilibrium. It is initially displaced 10...

DIFFERENTIAL EQUATIONS: An object stretches a spring 5 cm in equilibrium. It is initially displaced 10 cm above equilibrium and given an upward velocity of .25 m/s. Find and graph its displacement for t > 0. Find the frequency, period, amplitude, and phase angle of the motion.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping...
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping and that the mass is set in motion from 0.5 m above its equilibrium position with a downward velocity of 2 m/s, determine the position of the mass at any time. Find the amplitude, the frequency, the period and the phase shift of the motion.
A 5 kg object is attached to a spring and stretches it 10cm on its own....
A 5 kg object is attached to a spring and stretches it 10cm on its own. There is no damping in the system, but an external force is present, described by the function F(t) = 8 cos ωt. The object is initially displaced 25 cm downward from equilibrium with no initial velocity and the system experiences resonance. Find the displacement of the object at any time t.
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a...
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a point 1 foot above the equilibrium position with an upward velocity of 6 ft/s. Find the equation of motion. Determine the amplitude, period, and frequency of motion. (Use g = 32 ft/s2 for the acceleration due to gravity.)
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.10 N is applied. A 0.440-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced,...
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its equilibrium position and released with zero initial speed. After 0.8 s its displacement is found to be 0.120 m on the opposite side, and it has passed the equilibrium position once during this interval. Find the amplitude, the period, the frequency, the angular frequency and the spring constant.
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward,...
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in, and then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase of the motion
An object of mass m = 0.25 kg has a horizontal spring attached to its left...
An object of mass m = 0.25 kg has a horizontal spring attached to its left side, and slides along a frictionless surface. The spring constant is κ = 0.4 N m . At t = 0 s, the object is displaced 0.1m to the right of its equilibrium position. Its initial velocity is 0.4 m s , toward the right. a) Calculate the period T of the motion. b) Calculate the angular frequency ω. c) Calculate the frequency ν....
Applications of higher order differential equations A spring has one of its ends fixed, and a...
Applications of higher order differential equations A spring has one of its ends fixed, and a force of 15 N stretches it 20cm. A mass of 4 Kg is attached to the end of the spring, and the system is set in motion with initial position = 60 cm and initial velocity = 1.5 m/s. (a) Find the spring constant. (b) Write a problem of initial conditions for spring stretching, in meters. (c) Solve the problem posed in (b). (d)...
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from...
A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from rest from a point 1 foot below the equilibrium position with an upward velocity of 2ft/sec. find the equation of the motion and solve it, determine the period and amplitude.
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on...
3. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of 10 sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when the speed of the mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of 3 cm/s, formulate the initial value problem describing the motion of the mass. Then (a) Find the...