Question

A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from...

A mass weighing 32 pounds stretches a spring 2 feet. The mass is initially released from rest from a point 1 foot below the equilibrium position with an upward velocity of 2ft/sec. find the equation of the motion and solve it, determine the period and amplitude.

Homework Answers

Answer #1

Solution-

kX2=32

k=16

Assume equation of motion-

Position,

t=0 , y=-1ft

.....(1)

Velocity

v=2 at t=0

......(2)

Use energy conservation,

A = 3

Substitute in equation 1,

Substitute in equation 2

Time period T is,

T= 8.887 s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a...
A mass weighing 16 pounds stretches a spring 1 feet. It is initially released from a point 1 foot above the equilibrium position with an upward velocity of 6 ft/s. Find the equation of motion. Determine the amplitude, period, and frequency of motion. (Use g = 32 ft/s2 for the acceleration due to gravity.)
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s^2 for the acceleration due to...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 24 pounds attached to the end of the spring and stretches it 4...
A mass weighing 24 pounds attached to the end of the spring and stretches it 4 inches. The mass is initially released from rest from a point 3 inches above the equilibrium position with a downward velocity of 2 ft/sec. Find the equation of the motion?  
A mass weighing 8 pounds stretches a spring 2 feet. At t=0 the mass is released...
A mass weighing 8 pounds stretches a spring 2 feet. At t=0 the mass is released from a point 2 feet above the equilibrium position with a downward velocity of 4 (ft/s), determine the motion of the mass.
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 4 inches below the equilibrium position. (a) Find the position x of the mass at the times t = pi/12, pi/8, pi/6, pi/4, and 9pi/32 s. Use g = 32 ft/s^2 for the acceleration due to gravity. (b) what is the velocity of the mass when t = 3pi/16 s?
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from...
A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 4 inches below the equilibrium position. (a) Find the position x of the mass at the times t = π/12, π/8, π/6, π/4, and 9π/32 s. (Use g = 32 ft/s2 for the acceleration due to gravity.)
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches....
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. initially, the mass is released from rest from a point of 2 inches above the equilibrium position. find the equation of motion. (g= 32 ft/s^2)
A force of 64 pounds stretches a spring 4 feet. A mass of 4 slugs is...
A force of 64 pounds stretches a spring 4 feet. A mass of 4 slugs is attached to the spring and is initially released from rest 2 feet below the equilibrium position. (a) Suppose the spring has a damping force equal to 16 times the instantaneous velocity and is being driven by an external force, ?(?) = 4 cos(5?) . Write the IVP that this problem describes. (3 pts) (b) Solve the equation in part (a) to obtain the equation...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT