Question

Explain why Ax = 0 always has a solution whenever A is a linear transformation.

Explain why Ax = 0 always has a solution whenever A is a linear transformation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T...
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T is projected on the x2 axis.That is,a point x = [x1,x2]^T is projected on to [0,x2]^T . Is A an orthogonal matrix ?I any case,find the eigen values and eigen vectors of A .
True or false. If the linear system Ax=0 has k free variables, then every basis of...
True or false. If the linear system Ax=0 has k free variables, then every basis of the null space of A has k elements.
Given that A and B are n × n matrices and T is a linear transformation....
Given that A and B are n × n matrices and T is a linear transformation. Determine which of the following is FALSE. (a) If AB is not invertible, then either A or B is not invertible. (b) If Au = Av and u and v are 2 distinct vectors, then A is not invertible. (c) If A or B is not invertible, then AB is not invertible. (d) If T is invertible and T(u) = T(v), then u =...
Consider the transformation, T : P1 → P2 defined by T(ax + b) = ax2 +...
Consider the transformation, T : P1 → P2 defined by T(ax + b) = ax2 + ax + a (a) Find the image of 2x + 1. (b) Find another element of P1 that has the same image. (c) Is T a one-to-one transformation? Why or why not? (d) Find ker(T) and determine the basis for ker(T). What is the dimension of kernel(T)? (e) Find range(T) and determine a basis for range(T). What is the dimension of range(T)?
Prove that n is prime iff every linear equation ax ≡ b mod n, with a...
Prove that n is prime iff every linear equation ax ≡ b mod n, with a ≠ 0 mod n, has a unique solution x mod n.
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...
A linear transformation T:V→W is onto if and only if its kernel is {0}
A linear transformation T:V→W is onto if and only if its kernel is {0}
Suppose Ax = b 0 is a linear system and A is a square, singular matrix....
Suppose Ax = b 0 is a linear system and A is a square, singular matrix. How many solutions is it possible for the system to have?
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...
ARE DOMINANCE HIERARCHIES ALWAYS LINEAR? WHY OR WHY NOT?
ARE DOMINANCE HIERARCHIES ALWAYS LINEAR? WHY OR WHY NOT?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT