Question

Prove the following statements: a) If A and B are two positive semidefinite matrices in IR...

Prove the following statements:

a) If A and B are two positive semidefinite matrices in IR ^ n × n , then trace (AB) ≥ 0. If, in addition, trace (AB) = 0, then AB = BA =0

b) Let A and B be two (different) n × n real matrices such that R(A) = R(B), where R(·) denotes the range of a matrix.
(1) Show that R(A + B) is a subspace of R(A).
(2) Is it always true that R(A + B) = R(A)? If so, prove it; otherwise, give a counterexample

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A, B be n × n matrices. The following are two incorrect proofs that ABhas...
Let A, B be n × n matrices. The following are two incorrect proofs that ABhas the same non-zero eigenvalues as BA. For each, state two things wrong with the proof: (i) We will prove that AB and BA have the same characteristic equation. We have that det(AB − λI) = det(ABAA−1 − λAA−1) = det(A(BA − λI)A−1) = det(A) + det(BA − λI) − det(A) = det(BA − λI) Hence det(AB − λI) = det(BA − λI), and so...
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix,...
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix, and also have the same eigenvectors (but not necessarily the same eigenvalues), then  AB=BA.
(7) Prove the following statements. (c) If A is invertible and similar to B, then B...
(7) Prove the following statements. (c) If A is invertible and similar to B, then B is invertible and A−1 is similar to B−1 . (d) The trace of a square matrix is the sum of the diagonal entries in A and is denoted by tr A. It can be verified that tr(F G)=tr(GF) for any two n × n matrices F and G. Prove that if A and B are similar, then tr A = tr B
Q.Let A and B be n × n matrices such that A = A^2, B =...
Q.Let A and B be n × n matrices such that A = A^2, B = B^2, and AB = BA = 0. (a) Prove that rank(A + B) = rank(A) + rank(B). (b) Prove that rank(A) + rank(In − A) = n.
If I prove Det(A)Det(B) = Det(AB) for matrices A and B when A and B are...
If I prove Det(A)Det(B) = Det(AB) for matrices A and B when A and B are 2x2 matrices, can I use that to show that Det(A)Det(B) = Det(AB) for any n x n matrix? If so how?
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on...
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on its main diagonal. Let VV be the vector space of all 2×22×2 matrices with real entries. Let HH be the set of all 2×22×2 matrices with real entries that have trace 11. Is HH a subspace of the vector space VV? Does HH contain the zero vector of VV? choose H contains the zero vector of V H does not contain the zero vector...
Select all statements below which are true for all invertible n×n matrices A and B A....
Select all statements below which are true for all invertible n×n matrices A and B A. AB=BA B. (A+B)^2=A^2+B^2+2AB C. (In−A)(In+A)=In−A^2 D. 7A is invertible E. (AB)^−1=A^−1*B^−1 F. A+A^−1 is invertible
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
Let G be a group. Prove that following statements are equivalent. a.) G is commutative b.)...
Let G be a group. Prove that following statements are equivalent. a.) G is commutative b.) ∀ a,b ∈ G, (ab)2 = a2b2 c.) ∀ n ∈ N, ∀ a,b ∈ G, (ab)n = anbn
We say two n × n matrices A and B are similar if there is an...
We say two n × n matrices A and B are similar if there is an invertible n × n matrix P such that A = PBP^ -1. a) Show that if A and B are similar n × n matrices, then they must have the same determinant. b) Show that if A and B are similar n × n matrices, then they must have the same eigenvalues. c) Give an example to show that A and B can be...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT