Question

Let A be a positive definite matrix. If a ∈ R, prove that aA is positive...

Let A be a positive definite matrix. If a ∈ R, prove that aA is positive definite if and only if a > 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let K be a positive definite matrix. Prove that K is invertible, and that K^(-1) is...
Let K be a positive definite matrix. Prove that K is invertible, and that K^(-1) is also positive definite.
Let V be a finite dimensional space over R, with a positive definite scalar product. Let...
Let V be a finite dimensional space over R, with a positive definite scalar product. Let P : V → V be a linear map such that P P = P . Assume that P T P = P P T . Show that P = P T .
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
Let A be a square matrix with A^2 = A. Prove that A is diagonisable and...
Let A be a square matrix with A^2 = A. Prove that A is diagonisable and that 1 and 0 are the only 2 possible eigenvalues
Let A be an n x M matrix and let T(x) =A(x). Prove that T: R^m...
Let A be an n x M matrix and let T(x) =A(x). Prove that T: R^m R^n is a linear transformation
Which of the following ARE NOT potentially a cause of a non positive definite matrix? Missing...
Which of the following ARE NOT potentially a cause of a non positive definite matrix? Missing data. Mis-specified model. Analysis of a covariance matrix. Small number of subjects relative to variables.
Prove that if A is nonsingular, then AA^T is positive definite.
Prove that if A is nonsingular, then AA^T is positive definite.
Let A be an nxn matrix. Prove that A is invertible if and only if rank(A)...
Let A be an nxn matrix. Prove that A is invertible if and only if rank(A) = n.
Let ? be an eigenvalue of the ? × ? matrix A. Prove that ? +...
Let ? be an eigenvalue of the ? × ? matrix A. Prove that ? + 1 is an eigenvalue of the matrix ? + ?? .
9. Let a, b, q be positive integers, and r be an integer with 0 ≤...
9. Let a, b, q be positive integers, and r be an integer with 0 ≤ r < b. (a) Explain why gcd(a, b) = gcd(b, a). (b) Prove that gcd(a, 0) = a. (c) Prove that if a = bq + r, then gcd(a, b) = gcd(b, r).