Question

9. Let a, b, q be positive integers, and r be an integer with 0 ≤...

9. Let a, b, q be positive integers, and r be an integer with 0 ≤ r < b. (a) Explain why gcd(a, b) = gcd(b, a). (b) Prove that gcd(a, 0) = a. (c) Prove that if a = bq + r, then gcd(a, b) = gcd(b, r).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let a, b be integers with not both 0. Prove that hcf(a, b) is the smallest...
Let a, b be integers with not both 0. Prove that hcf(a, b) is the smallest positive integer m of the form ra + sb where r and s are integers. Hint: Prove hcf(a, b) | m and then use the minimality condition to prove that m | hcf(a, b).
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c...
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c x gcd(a, b). (Note that c gcd(a, b) means c times the greatest common division of a and b) (b) What is the greatest common divisor of a − 1 and a + 1? (There are two different cases you need to consider.)
Give an example of three positive integers m, n, and r, and three integers a, b,...
Give an example of three positive integers m, n, and r, and three integers a, b, and c such that the GCD of m, n, and r is 1, but there is no simultaneous solution to x ≡ a (mod m) x ≡ b (mod n) x ≡ c (mod r). Remark: This is to highlight the necessity of “relatively prime” in the hypothesis of the Chinese Remainder Theorem.
The least common multiple of nonzero integers a and b is the smallest positive integer m...
The least common multiple of nonzero integers a and b is the smallest positive integer m such that a | m and b | m; m is usually denoted [a,b]. Prove that [a,b] = ab/(a,b) if a > 0 and b > 0.
1. Let a ∈ Z and b ∈ N. Then there exist q ∈ Z and...
1. Let a ∈ Z and b ∈ N. Then there exist q ∈ Z and r ∈ Z with 0 ≤ r < b so that a = bq + r. 2. Let a ∈ Z and b ∈ N. If there exist q, q′ ∈ Z and r, r′ ∈ Z with 0 ≤ r, r′ < b so that a = bq + r = bq′ + r ′ , then q ′ = q and r...
Let g be a positive integer. Prove that if the regular g-sided polygon is constructible, so...
Let g be a positive integer. Prove that if the regular g-sided polygon is constructible, so is the regular 2g-sided polygon. Let p and q be two prime integers. Prove that if the regular p-sided and q-sided polygons are constructible so is the regular pq-sided polygon.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
8. Let a, b be integers. (a) Prove or disprove: a|b ⇒ a ≤ b. (b)...
8. Let a, b be integers. (a) Prove or disprove: a|b ⇒ a ≤ b. (b) Find a condition on a and/or b such that a|b ⇒ a ≤ b. Prove your assertion! (c) Prove that if a, b are not both zero, and c is a common divisor of a, b, then c ≤ gcd(a, b).
(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and...
(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and gcd(a, b) ≤ b. (b) If a and b are positive integers, then show that a and b are multiples of gcd(a, b).
Given non-zero integers a, b ∈ Z, let X := {ra + sb | r, s...
Given non-zero integers a, b ∈ Z, let X := {ra + sb | r, s ∈ Z and ra + sb > 0}. Then: GCD(a, b) is the least element in X.