Question

Let L ⊆ Σ* be a regular language. Suppose a ∈ Σ and define L\a =...

Let L ⊆ Σ* be a regular language. Suppose a ∈ Σ and define L\a = {x : ax ∈ L }. Show that L\a is regular.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Σ = {a}, and let L be the language L={an :nisamultipleof3butnisNOTamultipleof5}. Is L a regular...
Let Σ = {a}, and let L be the language L={an :nisamultipleof3butnisNOTamultipleof5}. Is L a regular language? HINT: Maybe instead of an explicit DFA or regular expression, you can find another argument.
Given a language L, etc. Show that the language L is a regular language. To show...
Given a language L, etc. Show that the language L is a regular language. To show that the language L is a regular language - find/design a dfa that recognizes the language L. Given a regular expression r, etc. What is the language L, L = L(r)? L(r) is the set of all strings etc.
Let L be any non-empty language over an alphabet Σ. Show that L^2⊆L^3 if and only...
Let L be any non-empty language over an alphabet Σ. Show that L^2⊆L^3 if and only if λ∈L.
For Automata class: Let L be a regular language over the binary alphabet. Consider the following...
For Automata class: Let L be a regular language over the binary alphabet. Consider the following language over the same alphabet: L' = {w | |w| = |u| for some u ∈ L}. Prove that L' is regular.
Let Σ = {0, 1}. Give a regular expression that expresses the language {w | w...
Let Σ = {0, 1}. Give a regular expression that expresses the language {w | w contains exactly two 0s}.
Prove that if a language L is regular, the suffix language of L is also regular.
Prove that if a language L is regular, the suffix language of L is also regular.
Let Σ = {a, b, c}. Use the Pumping lemma to show that the language A...
Let Σ = {a, b, c}. Use the Pumping lemma to show that the language A = {arbsct | r + s ≥ t} is not regular.
Let L be a regular language over {0, 1}. Show how we can use the previous...
Let L be a regular language over {0, 1}. Show how we can use the previous result to show that in order to determine whether or not L is empty, we need only test at most 2n − 1 strings.
Show that language B = {〈A〉| A is a DFA and L(A) = Σ* } is...
Show that language B = {〈A〉| A is a DFA and L(A) = Σ* } is decidable.
5 A Non-Regular language Prove that the language}L={www∣w∈{0,1}​∗​​} is not regular.
5 A Non-Regular language Prove that the language}L={www∣w∈{0,1}​∗​​} is not regular.