Question

5 A Non-Regular language Prove that the language}L={www∣w∈{0,1}​∗​​} is not regular.

5 A Non-Regular language

Prove that the language}L={www∣w∈{0,1}​∗​​} is not regular.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Σ = {0,1}. Prove that the language { w | w contains the substring 01001...
Let Σ = {0,1}. Prove that the language { w | w contains the substring 01001 } is regular by providing a finite automaton to recognize the language. Include a state diagram, formal description, and informal justification for the correctness of your automaton.
Prove that if a language L is regular, the suffix language of L is also regular.
Prove that if a language L is regular, the suffix language of L is also regular.
Prove that the following language is regular. L3 = {w | if w contains any 0’s,...
Prove that the following language is regular. L3 = {w | if w contains any 0’s, then it contains at least three of them}
Prove by induction on n that if L is a language and R is a regular...
Prove by induction on n that if L is a language and R is a regular expression such that L = L(R) then there exists a regular expression Rn such that L(Rn) = L n. Be sure to use the fact that if R1 and R2 are regular expressions then L(R1R2) = L(R1) · L(R2).
For Automata class: Let L be a regular language over the binary alphabet. Consider the following...
For Automata class: Let L be a regular language over the binary alphabet. Consider the following language over the same alphabet: L' = {w | |w| = |u| for some u ∈ L}. Prove that L' is regular.
What is the regular expression for the language L={w| w starts with 1 and has odd...
What is the regular expression for the language L={w| w starts with 1 and has odd length}? The alphabet of the language is {0, 1};
3. Consider the following “theorem". If L is a regular language then ∀ words w ∈...
3. Consider the following “theorem". If L is a regular language then ∀ words w ∈ L where |w| > 1 ∃ an expression w = xyz where (a) ∀i≥0.xyiz∈L (b) |y| ≥ 1 Explain whether this is a (true) theorem or not ( the question want us to explain why this theorem does not work alone)
prove that any regular language L can be represented by a regular expression in DNF(a1Ua2U...Uan), where...
prove that any regular language L can be represented by a regular expression in DNF(a1Ua2U...Uan), where none of ai, 1<=i<=n, contains the operator U.
The chopleft operation of a regular language L is removing the leftmost symbol of every string...
The chopleft operation of a regular language L is removing the leftmost symbol of every string in L: chopleft(L) = { w | vw ∈ L, with |v| = 1}. Prove or disprove that the family of regular languages is closed under the chopleft operation.    Hint: If it’s regular, give an idea of constructing an FA that accepts chopleft(L) using an FA M that accepts L. Otherwise, give a counterexample.
Prove that the language ?={?^??^??^?:?≤?+?}is not regular
Prove that the language ?={?^??^??^?:?≤?+?}is not regular