Question

Let H, K be two groups and G = H × K. Let H = {(h,...

Let H, K be two groups and G = H × K. Let H = {(h, e) | h ∈ H}, where e is the identity in K. Show that G/H is isomorphic to K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G and G′ be two isomorphic groups that have a unique normal subgroup of a...
Let G and G′ be two isomorphic groups that have a unique normal subgroup of a given order n, H and H′. Show that the quotient groups G/H and G′/H′ are isomorphic.
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a...
Let G and H be groups and f:G--->H be a surjective homomorphism. Let J be a subgroup of H and define f^-1(J) ={x is an element of G| f(x) is an element of J} a. Show ker(f)⊂f^-1(J) and ker(f) is a normal subgroup of f^-1(J) b. Let p: f^-1(J) --> J be defined by p(x) = f(x). Show p is a surjective homomorphism c. Show the set kef(f) and ker(p) are equal d. Show J is isomorphic to f^-1(J)/ker(f)
Let G and H be groups, and let G0 = {(g, 1) : g ∈ G}...
Let G and H be groups, and let G0 = {(g, 1) : g ∈ G} . (a) Show that G0 ≅ G. (b) Show that G0 is a normal subgroup of G × H. (c) Show that (G × H)/G0 ≅ H.
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...
Let G be a group and α : G → H be a homomorphism of groups...
Let G be a group and α : G → H be a homomorphism of groups with H abelian. Show that α factors via G/[G, G], i.e. there exists a homomorphism β : G/[G, G] −→ H, such that α = β◦q, where q : G −→ G/[G, G] is the quotient homomorphis
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H =...
Let M/F and K/F be Galois extensions with Galois groups G = Gal(M/F) and H = Gal(K/F). Since M/F is Galois, and K/F is a field extension, we have the composite extension field K M Show that the image is {(τ, υ) ∈ G × H | τ |K∩M = υ|K∩M }
Let N and H be groups, and here for a homomorphism f: H --> Aut(N) =...
Let N and H be groups, and here for a homomorphism f: H --> Aut(N) = group automorphism, let N x_f H be the corresponding semi-direct product. Let g be in Aut(N), and  k  be in Aut(H),  Let C_g: Aut(N) --> Aut(N) be given by conjugation by g.  Now let  z :=  C_g * f * k: H --> Aut(N), where * means composition. Show that there is an isomorphism from Nx_f H to Nx_z H, which takes the natural...
f H and K are subgroups of a group G, let (H,K) be the subgroup of...
f H and K are subgroups of a group G, let (H,K) be the subgroup of G generated by the elements {hkh−1k−1∣h∈H, k∈K}. Show that : H◃G if and only if (H,G)<H
Let G be a finite group and let H, K be normal subgroups of G. If...
Let G be a finite group and let H, K be normal subgroups of G. If [G : H] = p and [G : K] = q where p and q are distinct primes, prove that pq divides [G : H ∩ K].
Suppose that G is a group with subgroups K ≤ H ≤ G. Suppose that K...
Suppose that G is a group with subgroups K ≤ H ≤ G. Suppose that K is normal in G. Let G act on G/H, the set of left cosets of H, by left multiplication. Prove that if k ∈ K, then left multiplication of G/H by k is the identity permutation on G/H.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT