Question

Let a and b be nonzero integers. Show that g.c.d(a,b)=1 if and only if g.c.d(a, a+b)=1

Let a and b be nonzero integers. Show that g.c.d(a,b)=1 if and only if g.c.d(a, a+b)=1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let a, b be nonzero integers with (a, b) = 1. Compute (a + b, a...
Let a, b be nonzero integers with (a, b) = 1. Compute (a + b, a − b). Justify your answer. (abstract algebra)
Let a,b,c be integers with a + b = c. Show that if w is an...
Let a,b,c be integers with a + b = c. Show that if w is an integer that divides any two of a, b, and c, then w will divide the third.
Prove by contradiction: Let a and b be integers. Show that if is odd, then a...
Prove by contradiction: Let a and b be integers. Show that if is odd, then a is odd and b is odd. a) State the negation of the above implication. b) Disprove the negation and complete your proof.
Prove: Let a and b be integers. Prove that integers a and b are both even...
Prove: Let a and b be integers. Prove that integers a and b are both even or odd if and only if 2/(a-b)
Let a, b be positive integers and let a = k(a, b), b = h(a, b)....
Let a, b be positive integers and let a = k(a, b), b = h(a, b). Suppose that ab = n^2 show that k and h are perfect squares.
Let a, b, and n be integers with n > 1 and (a, n) = d....
Let a, b, and n be integers with n > 1 and (a, n) = d. Then (i)First prove that the equation a·x=b has solutions in n if and only if d|b. (ii) Next, prove that each of u, u+n′, u+ 2n′, . . . , u+ (d−1)n′ is a solution. Here,u is any particular solution guaranteed by (i), and n′=n/d. (iii) Show that the solutions listed above are distinct. (iv) Let v be any solution. Prove that v=u+kn′ for...
Let f(x) be a nonzero polynomial in F[x]. Show that f(x) is a unit in F[x]...
Let f(x) be a nonzero polynomial in F[x]. Show that f(x) is a unit in F[x] if and only if f(x) is a nonzero constant polynomial, that is, f(x) =c where 0F is not equal to c where c is a subset of F. Hence deduce that F[x] is not a field.
The least common multiple of nonzero integers a and b is the smallest positive integer m...
The least common multiple of nonzero integers a and b is the smallest positive integer m such that a | m and b | m; m is usually denoted [a,b]. Prove that [a,b] = ab/(a,b) if a > 0 and b > 0.
Let X be a subset of the integers from 1 to 1997 such that |X|≥34. Show...
Let X be a subset of the integers from 1 to 1997 such that |X|≥34. Show that there exists distinct a,b,c∈X and distinct x,y,z∈X such that a+b+c=x+y+z and {a,b,c}≠{x,y,z}.
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a...
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a − b is even. 1. Show that R is an equivalence relation 2. List teh equivalence classes for the relation Can anyone help?