Question

Let a, b, and n be integers with n > 1 and (a, n) = d....

Let a, b, and n be integers with n > 1 and (a, n) = d. Then

(i)First prove that the equation a·x=b has solutions in n if and only if d|b.

(ii) Next, prove that each of u, u+n′, u+ 2n′, . . . , u+ (d−1)n′ is a solution. Here,u is any particular solution guaranteed by (i), and n′=n/d.

(iii) Show that the solutions listed above are distinct.

(iv) Let v be any solution. Prove that v=u+kn′ for some k ∈ with 0≤k

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g...
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g : N→Z defined by g(k) = k/2 for even k and g(k) = −(k + 1)/2 for odd k. Prove that g is a bijection. (a) Prove that g is a function. (b) Prove that g is an injection . (c) Prove that g is a surjection.
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any...
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any set of n + 1 integers from {1, 2, . . . , 2n}, there are two elements that are consecutive (i.e., differ by one).
Due October 25. Let Z[i] denote the Gaussian integers, with norm N(a + bi) = a...
Due October 25. Let Z[i] denote the Gaussian integers, with norm N(a + bi) = a 2 + b 2 . Recall that ±1, ±i are the only units i Z[i]. (i) Use the norm N to show that 1 + i is irreducible in Z[i]. (ii) Write 2 as a product of distinct irreducible elements in Z[i].
Let A = {a,b,c,d}. Find an example of a relation on A that is (i) reflexive...
Let A = {a,b,c,d}. Find an example of a relation on A that is (i) reflexive and symmetric. (ii) not symmetric and not antisymmetric. (iii) not symmetric but antisymmetric. (iv) an equivalence relation (v) a total order.
Let N* be the set of positive integers. The relation ∼ on N* is defined as...
Let N* be the set of positive integers. The relation ∼ on N* is defined as follows: m ∼ n ⇐⇒ ∃k ∈ N* mn = k2 (a) Prove that ∼ is an equivalence relation. (b) Find the equivalence classes of 2, 4, and 6.
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find...
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find phi(2^n) 2. Find phi(p^n) 3. Find phi(p•q) where p, q are distinct primes 4. Find phi(a•b) where a, b are relatively prime
Let B[1...n] be an array of integers. To express that no integer occurs twice in the...
Let B[1...n] be an array of integers. To express that no integer occurs twice in the B We may write? (check all the answers that apply) a) forall i 1..n forall j in 1...n B[i] != B[j] b)for all i in 1...n forall j in 1...n, i != j => B[i] !=B[j] c)forll i in 1...n forall j in 1...n i != j and B[i] != B[j] d)forall i in 1...n forall j in 1...n B[i] =B[j] => i=j e)forall...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set consisting of the following elements: A = N, B = 2N , C = 2P(N) , D = [0, 1), E = ∅, F = Z × Z, G = {x ∈ N|x 2 + x < 2}, H = { 2 n 3 k |n, k ∈ N}, I = R \ Q, J = R. Consider the relation ∼ on S given...
How do I prove "there are no integers k > 1 and n > 0 such...
How do I prove "there are no integers k > 1 and n > 0 such that k^2 +1 = 2^n.