Question

Let a, b, and n be integers with n > 1 and (a, n) = d....

Let a, b, and n be integers with n > 1 and (a, n) = d. Then

(i)First prove that the equation a·x=b has solutions in n if and only if d|b.

(ii) Next, prove that each of u, u+n′, u+ 2n′, . . . , u+ (d−1)n′ is a solution. Here,u is any particular solution guaranteed by (i), and n′=n/d.

(iii) Show that the solutions listed above are distinct.

(iv) Let v be any solution. Prove that v=u+kn′ for some k ∈ with 0≤k

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Show that the following algorithm computes the greatest common divisor g of the positive integers...
(a) Show that the following algorithm computes the greatest common divisor g of the positive integers a and b, together with a solution (u, v) in integers to the equation au + bv = gcd(a, b). 1. Set u = 1, g = a, x = 0, and y = b 2. If y = 0, set v = (g − au)/b and return the values (g, u, v) 3. Divide g by y with remainder, g = qy +...
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g...
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g : N→Z defined by g(k) = k/2 for even k and g(k) = −(k + 1)/2 for odd k. Prove that g is a bijection. (a) Prove that g is a function. (b) Prove that g is an injection . (c) Prove that g is a surjection.
1. In this problem, the domain of x is integers. For each of the statements, indicate...
1. In this problem, the domain of x is integers. For each of the statements, indicate whether it is TRUE or FALSE then write its negation and simplify it to the point that no ¬ symbol occurs in any of the statements (you may, however, use binary symbols such as ’̸=’ and <). i. ∀x(x+ 2 ≠ x+3) ii. ∃x(2x = 3x) iii. ∃x(x^2 = x) iv. ∀x(x^2 > 0) v. ∃x(x^2 > 0) 2. Let A = {7,11,15}, B...
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any...
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any set of n + 1 integers from {1, 2, . . . , 2n}, there are two elements that are consecutive (i.e., differ by one).
Due October 25. Let Z[i] denote the Gaussian integers, with norm N(a + bi) = a...
Due October 25. Let Z[i] denote the Gaussian integers, with norm N(a + bi) = a 2 + b 2 . Recall that ±1, ±i are the only units i Z[i]. (i) Use the norm N to show that 1 + i is irreducible in Z[i]. (ii) Write 2 as a product of distinct irreducible elements in Z[i].
Let A = {a,b,c,d}. Find an example of a relation on A that is (i) reflexive...
Let A = {a,b,c,d}. Find an example of a relation on A that is (i) reflexive and symmetric. (ii) not symmetric and not antisymmetric. (iii) not symmetric but antisymmetric. (iv) an equivalence relation (v) a total order.
Let N* be the set of positive integers. The relation ∼ on N* is defined as...
Let N* be the set of positive integers. The relation ∼ on N* is defined as follows: m ∼ n ⇐⇒ ∃k ∈ N* mn = k2 (a) Prove that ∼ is an equivalence relation. (b) Find the equivalence classes of 2, 4, and 6.
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find...
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find phi(2^n) 2. Find phi(p^n) 3. Find phi(p•q) where p, q are distinct primes 4. Find phi(a•b) where a, b are relatively prime
Let B[1...n] be an array of integers. To express that no integer occurs twice in the...
Let B[1...n] be an array of integers. To express that no integer occurs twice in the B We may write? (check all the answers that apply) a) forall i 1..n forall j in 1...n B[i] != B[j] b)for all i in 1...n forall j in 1...n, i != j => B[i] !=B[j] c)forll i in 1...n forall j in 1...n i != j and B[i] != B[j] d)forall i in 1...n forall j in 1...n B[i] =B[j] => i=j e)forall...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT