Question

Suppose that G is a cyclic group, with generator a. Prove that if H is a...

Suppose that G is a cyclic group, with generator a. Prove that if H is a
subgroup of G then H is cyclic.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be a cyclic group, and H be any group. (i) Prove that any homomorphism...
Let G be a cyclic group, and H be any group. (i) Prove that any homomorphism ϕ : G → H is uniquely determined by where it maps a generator of G. In other words, if G = <x> and h ∈ H, then there is at most one homomorphism ϕ : G → H such that ϕ(x) = h. (ii) Why is there ‘at most one’? Give an example where no such homomorphism can exist.
Suppose that G is a group and H={x|xg=gx for all g∈G}. a.) Prove that H is...
Suppose that G is a group and H={x|xg=gx for all g∈G}. a.) Prove that H is a subgroup of G. b.) Prove that H is abelian.
Let G be a group and suppose H = {g5 : g ∈ G} is a...
Let G be a group and suppose H = {g5 : g ∈ G} is a subgroup of G. (a) Prove that H is normal subgroup of G. (b) Prove that every element in G/H has order at most 5.
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup...
Suppose : phi :G -H is a group isomorphism . If N is a normal subgroup of G then phi(N) is a normal subgroup of H. Prove it is a subgroup and prove it is normal?
Let G be a finite group and H be a subgroup of G. Prove that if...
Let G be a finite group and H be a subgroup of G. Prove that if H is only subgroup of G of size |H|, then H is normal in G.
Let G be an Abelian group and H a subgroup of G. Prove that G/H is...
Let G be an Abelian group and H a subgroup of G. Prove that G/H is Abelian.
Let G be a cyclic group; an element g ∈ G is called a generator of...
Let G be a cyclic group; an element g ∈ G is called a generator of G if G<g>. Let φ : G → G be an endomorphism of G, and let g be a generator of G. Show that φ is an automorphism if and only if φ(g) is a generator of G. Use this to find Aut(Z).
(b) If H is a p-subgroup of a finite group G, prove that H is contained...
(b) If H is a p-subgroup of a finite group G, prove that H is contained in a Sylow p-subgroup of G. [Hint: Consider the H-conjugacy class equation for the set of all Sylowp-subgroups of G.]
Prove that if H,K are two subsets in group G with H is the subset of...
Prove that if H,K are two subsets in group G with H is the subset of K, then CG(K)(the centralizer of K in G) is a subgroup of CG(H)
Suppose that a cyclic group G has exactly three subgroups: G itself, e, and a subgroup...
Suppose that a cyclic group G has exactly three subgroups: G itself, e, and a subgroup of order p, where p is a prime greater than 2. Determine |G|
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT